Andromeda & Milky Way galaxies in free fall towards each other

<u>*IF*</u> initial mutual velocity = 0 m/s (both radial and orbital velocity).

(Andromeda actually has a radial velocity towards us of rougly 300 km/s, but we hardly know its lateral velocity, so it might well be that we are revolving our common barycentre).

We consider the resulting bull's eye trajectory to be a degenerate elliptical orbit $[a < \infty, b = 0 \Rightarrow e = 1]$ from apoapsis to periapsis according to Kepler's laws, where the reduced mass $\mu = Mm/(M + m)$ "orbits" the M + m barycentre and we calculate half the orbital period.

Kepler's 3rd law:
$$\omega^2 a^3 = GM_{tot} \div \omega = \sqrt{\frac{GM_{tot}}{a^3}}$$

we have: $a = \frac{R}{2} \div a^3 = \frac{R^3}{2^2 2}$
 $\omega = \frac{2\pi}{T} \div T = \frac{2\pi}{\omega} = 2\pi \cdot \sqrt{\frac{a^3}{GM_{tot}}} = \frac{2\pi}{2} \cdot \sqrt{\frac{R^3}{2GM_{tot}}}$
hence, the *free fall time* (½ orbit) is: $\mathbf{t}_{ff} = \frac{T}{2} = \frac{\pi}{2} \cdot \sqrt{\frac{R^3}{2GM_{tot}}}$

$$\label{eq:Wehave:} \begin{array}{l} \underline{\text{We have:}} \\ R \approx 2.54 \times 10^6 \ \text{ly} \approx 2.403 \times 10^{22} \ \text{m} \\ G \approx 6.67430 \times 10^{-11} \ \text{N} \cdot \text{m}^2/\text{kg}^2 \\ M_{\text{MW}} \approx 1.15 \times 10^{12} M_{\odot} \\ M_{\text{Andr}} \approx 1.5 \times 10^{12} M_{\odot} \\ M_{\odot} \approx 1.98847 \times 10^{30} \ \text{kg} \\ \end{array}$$

vielding:

$t_{ m ff}pprox 2.\,21 imes 10^{17}$ s $pprox 6.\,99 imes 10^9$ yr $pprox 0.\,508t_{ m H}$

At the aforementioned speed of 300 km/s (wrongly assuming it constant), it would take 2.403×10^{22} m / 300 km/s $\approx 2.54 \times 10^{9}$ yr $\approx 0.184 t_{\rm H}$.

Andromeda is our nearest neighbour spiral galaxy. On the cosmic scale, it is *very* close to us and yet our kiss (starting with zero velocity) would have to bide

seven billion years, half the age of the universe!

Intergalactic gravitation is GIGANTICALLY Small.

Yes, it's astronomically small, negligible for most purposes.

We see this fleet need no beat and neatly meet & the speed be:

(of course it's a one-dimensional head-on collision and we calculate in the barycentric frame!)

conservation of energy:	$E_{\rm kin,tot} = \frac{1}{2}M_{\rm A}v_{\rm A}^2 + \frac{1}{2}M_{\rm MW}v_{\rm MW}^2 = \frac{GM_{\rm A}}{2}$	$\frac{M_{\rm A}M_{\rm MW}}{R} = E_{\rm pot}$		
conservation of momentum:	$\frac{v_{\rm A}}{v_{\rm MW}} = \frac{M_{\rm MW}}{M_{\rm A}}$	(using absolute values)		
hence:	$v_{\rm MW} = v_{\rm A} \frac{M_{\rm A}}{M_{\rm MW}} \therefore v_{\rm MW}^2 = v_{\rm A}^2 \frac{M_{\rm A}^2}{M_{\rm MW}^2}$			
therefore:	$\frac{1}{2}M_{\rm A}v_{\rm A}^2 + \frac{1}{2}M_{\rm MW}v_{\rm A}^2\frac{M_{\rm A}^2}{M_{\rm MW}^2} = \frac{GM_{\rm A}M_{\rm MW}}{R}$			
i.e.:	$v_{\rm A}^2 M_{\rm A} \left(1 + \frac{M_{\rm A}}{M_{\rm MW}} \right) = \frac{2GM_{\rm A}M_{\rm MW}}{R}$			
yielding:	$\boldsymbol{v}_{\mathbf{A}} = \sqrt{\frac{2GM_{\mathbf{A}}M_{\mathbf{MW}}}{RM_{\mathbf{A}}\left(1 + \frac{M_{\mathbf{A}}}{M_{\mathbf{MW}}}\right)}} = \sqrt{\frac{2GM_{\mathbf{MW}}^2}{R(M_{\mathbf{A}} + M_{\mathbf{MW}})}}$	$= M_{\rm MW} \sqrt{\frac{2G}{R(M_{\rm A} + M_{\rm MW})}}$		
and:	$v_{\rm MW} = v_{\rm A} \frac{M_{\rm A}}{M_{\rm MW}}$	$= M_{\rm A} \sqrt{\frac{2G}{R(M_{\rm A} + M_{\rm MW})}}$		
which results in:	$\boldsymbol{v_{\text{coll}}} = (M_{\text{A}} + M_{\text{MW}}) \sqrt{\frac{2G}{R(M_{\text{A}} + M_{\text{MW}})}}$	$=\sqrt{\frac{2G(M_{\rm A}+M_{\rm MW})}{R}}$		
This renders:	\sim 171 km/s			
Cf.:	~200 km/s < $v_{\odot,\rm MW}$ < ~250 km/s			
Dividing the sum of their radii by this velocity yields the maximum duration of this collision :				

we find:	R _{MW}	pprox 52850 ly	(Google as of 2024-03-26)
and:	R _A	pprox 110000 ly	(sic)
so:	R _{tot}	pprox 162850 ly $pprox$ 1.54 $ imes$ 10 ²¹	m
vielding:	$\Lambda t_{\rm even}$	$< \sim 285 m$ illion vears.	

leiung.

203 <u>m</u>illion y

How many stars will collide? See http://henk-reints.nl/astro/HR-Galaxy-star-collision.pdf.

Now assume the sun's orbital period around the galactic centre (\sim 240 Ma) equals the rotation period of the entire Milky Way. Then the latter has revolved not more than a mere $13.77 \text{ Ga} / 240 \text{ Ma} \approx 57 \text{ times since the big bang.}$

Ceci n'est pas la galaxie d'Andromède, ni la Voie lactée.