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The archangel Gabriel plays a horn: 

 

which mathemagicians like to represent by: 

 𝑓(𝑥) =
1

𝑥
 

 (for  𝑥  from  1  to  𝑎  where  𝑎  is the length of the horn minus  1), rotated around the x-axis: 

 

 

It surrounds a volume of: 𝑉(𝑎) = ∫  
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and it has a surface area equal to: 𝐴(𝑎) = 2𝜋 ∫  
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(https://en.wikipedia.org/wiki/Gabriel%27s_Horn, https://en.wikipedia.org/wiki/Solid_of_revolution, https://en.wikipedia.org/wiki/Surface_of_revolution) 

The longer the horn gets, it approaches: 𝑉 = lim𝑎→∞  𝑉(𝑎) = 𝜋 

and: 𝐴 = lim𝑎→∞  𝐴(𝑎) = ∞ 

so Gabriel's mathemagical horn of infinite length has an infinite surface area, but a finite volume! 

This is also called the painter's paradox. Because  𝑉 = 𝜋  I would rather call it the 𝜋nter's 𝜋radox... 

A finite amount of 𝜋nt would fully 𝜋nt the infinite surface area, whilst the same amount of 𝜋nt would 

still remain, not touching the horn's surface. 
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But mathemagically, the thickness of the layer of 𝜋nt would be nought and then the total volume of the 

layer would be  0 × ∞,  which like  
0

0
  can have any value, so it may well be diddly squat. 

Physically, the thickness of the 𝜋nt layer would be at least 1 atom, and as the horn gets longer, its 

diameter will become smaller, so the 𝜋nting will just stop at a given length. Moreover, the cosmos does 

not contain enough matter for an infinitely long horn. Physical infinity is a myth. 

I presume you find it not strange at all that the surface area under a curve can be finite whilst the length 

of the curve is infinite, like for example: 

 ∫ 𝑒−𝑥𝑑𝑥
∞

0
= 1  and the Gaussian integral:  ∫ 𝑒−𝑥2

𝑑𝑥
+∞
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It is just a shape with a finite surface and an infinite circumference, and in the same way the horn's 

volume can be finite whilst both its length and surface area are infinite. 

 

Exact surface area: 

on https://www.integral-calculator.com/ we find (after clicking the "Simplify" button): 
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Let's simplify this even further (please note: simplification is not necessarily a simple process...). 

It equals: 
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which equals: 
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For large values of  𝑎  this can be approximated 

as: 𝐴(𝑎 → ∞) ≈ 2𝜋 ln
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which is indeed greater than the aforementioned  2𝜋 ln 𝑎 . 
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