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The archangel Gabriel plays a horn:

which mathemagicians like to represent by:
1
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(for x from 1 to a where a is the length of the horn minus 1), rotated around the x-axis:

It surrounds a volume of:

-x(1-

and it has a surface area equal to: A(a) = 2m fla % 1+ x%dx > 21 fla idx =2mlna

(https://en.wikipedia.org/wiki/Gabriel%27s Horn, https://en.wikipedia.org/wiki/Solid of revolution, https://en.wikipedia.org/wiki/Surface of revolution)

The longer the horn gets, it approaches: V=Ilim,,, V(a) =m
and: A =limg,, A(a) = o
so Gabriel's mathemagical horn of infinite length has an infinite surface area, but a finite volume!

This is also called the painter's paradox. Because V = m | would rather call it the mnter's mradox...
A finite amount of mnt would fully mnt the infinite surface area, whilst the same amount of mnt would
still remain, not touching the horn's surface.
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But mathemagically, the thickness of the layer of mnt would be nought and then the total volume of the

layer would be 0 X oo, which like % can have any value, so it may well be diddly squat.

Physically, the thickness of the mnt layer would be at least 1 atom, and as the horn gets longer, its
diameter will become smaller, so the tnting will just stop at a given length. Moreover, the cosmos does
not contain enough matter for an infinitely long horn. Physical infinity is a myth.

| presume you find it not strange at all that the surface area under a curve can be finite whilst the length
of the curve is infinite, like for example:

foooe‘xdx = 1 and the Gaussian integral: f::’ e’ dx =+

It is just a shape with a finite surface and an infinite circumference, and in the same way the horn's
volume can be finite whilst both its length and surface area are infinite.

Exact surface area:

on https://www.integral-calculator.com/ we find (after clicking the "Simplify" button):
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Let's simplify this even further (please note: simplification is not necessarily a simple process...).
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therefore: A(a) = 2mInZ @ iatil
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For large values of a this can be approximated
(D). 2 , 27154
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which is indeed greater than the aforementioned 2mlna .

as: A(a » ) = 2mln ~ 2mIn(1.1196 - a)
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