The archangel Gabriel plays a horn:

which mathemagicians like to represent by:

$$
f(x)=\frac{1}{x}
$$

(for x from 1 to a where a is the length of the horn minus 1), rotated around the x-axis:

It surrounds a volume of:

$$
\left.V(a)=\int_{1}^{a} \frac{\pi}{x^{2}} d x=\frac{-\pi}{x}\right]_{1}^{a}=\frac{-\pi}{a}-\frac{-\pi}{1}=\pi\left(1-\frac{1}{a}\right)
$$

and it has a surface area equal to:

$$
A(a)=2 \pi \int_{1}^{a} \frac{1}{x} \sqrt{1+\frac{1}{x^{4}}} d x>2 \pi \int_{1}^{a} \frac{1}{x} d x=2 \pi \ln a
$$

(https://en.wikipedia.org/wiki/Gabriel\'s Horn, https://en.wikipedia.org/wiki/Solid of revolution, https://en.wikipedia.org/wiki/Surface of revolution)
The longer the horn gets, it approaches:

$$
V=\lim _{a \rightarrow \infty} V(a)=\pi
$$

and:
$A=\lim _{a \rightarrow \infty} A(a)=\infty$
so Gabriel's mathemagical horn of infinite length has an infinite surface area, but a finite volume!
This is also called the painter's paradox. Because $V=\pi$ I would rather call it the π nter's π radox... A finite amount of $\pi \mathrm{nt}$ would fully $\pi \mathrm{nt}$ the infinite surface area, whilst the same amount of $\pi \mathrm{nt}$ would still remain, not touching the horn's surface.

But mathemagically, the thickness of the layer of $\pi \mathrm{nt}$ would be nought and then the total volume of the layer would be $0 \times \infty$, which like $\frac{0}{0}$ can have any value, so it may well be diddly squat.

Physically, the thickness of the $\pi n t$ layer would be at least 1 atom, and as the horn gets longer, its diameter will become smaller, so the πn nting will just stop at a given length. Moreover, the cosmos does not contain enough matter for an infinitely long horn. Physical infinity is a myth.

I presume you find it not strange at all that the surface area under a curve can be finite whilst the length of the curve is infinite, like for example:

$$
\int_{0}^{\infty} e^{-x} d x=1 \text { and the Gaussian integral: } \int_{-\infty}^{+\infty} e^{-x^{2}} d x=\sqrt{\pi}
$$

It is just a shape with a finite surface and an infinite circumference, and in the same way the horn's volume can be finite whilst both its length and surface area are infinite.

Exact surface area:

on https://www.integral-calculator.com/ we find (after clicking the "Simplify" button):

$$
\frac{A(a)}{2 \pi}=\int_{1}^{a} \frac{1}{x} \sqrt{1+\frac{1}{x^{4}}} d x=\frac{\ln \left(\frac{\sqrt{a^{4}+1}+a^{2}}{a^{2}}\right)-\ln \left(\frac{\sqrt{a^{4}+1}-a^{2}}{a^{2}}\right)-\ln (\sqrt{2}+1)+\ln (\sqrt{2}-1)}{4}-\frac{\sqrt{a^{4}+1}}{2 a^{2}}+\frac{1}{\sqrt{2}}
$$

Let's simplify this even further (please note: simplification is not necessarily a simple process...).
It equals: $\quad \frac{A(a)}{2 \pi}=\frac{1}{2} \sqrt{2}-\frac{1}{4} \ln \left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right)-\frac{1}{2} \sqrt{1+\frac{1}{a^{4}}}+\frac{1}{4} \ln \left(\frac{\sqrt{a^{4}+1}+a^{2}}{\sqrt{a^{4}+1}-a^{2}}\right)$
Now:

$$
\frac{\sqrt{a^{4}+1}+a^{2}}{\sqrt{a^{4}+1}-a^{2}}=\frac{\sqrt{a^{4}+1}+a^{2}}{\sqrt{a^{4}+1}-a^{2}} \cdot \frac{\sqrt{a^{4}+1}+a^{2}}{\sqrt{a^{4}+1}+a^{2}}=\frac{\left(\sqrt{a^{4}+1}+a^{2}\right)^{2}}{{\sqrt{a^{4}+1}}^{2}-\left(a^{2}\right)^{2}}=\frac{\left(\sqrt{a^{4}+1}+a^{2}\right)^{2}}{a^{4}+1-a^{4}}=\left(\sqrt{a^{4}}\right.
$$

and:

$$
\frac{\sqrt{2}+1}{\sqrt{2}-1}=\frac{\sqrt{2}+1}{\sqrt{2}-1} \cdot \frac{\sqrt{2}+1}{\sqrt{2}+1}=\frac{\sqrt{2}^{2}+2 \sqrt{2}+1}{\sqrt{2}^{2}-1^{2}}=3+2 \sqrt{2}
$$

hence:

$$
\frac{A(a)}{2 \pi}=\frac{1}{2} \sqrt{2}-\frac{1}{4} \ln (3+2 \sqrt{2})-\frac{1}{2} \sqrt{1+\frac{1}{a^{4}}}+\frac{1}{4} \ln \left(\sqrt{a^{4}+1}+a^{2}\right)^{2}
$$

which equals: $\quad \frac{A(a)}{2 \pi}=\ln e^{\frac{1}{2} \sqrt{2}}-\ln \sqrt[4]{3+2 \sqrt{2}}-\ln e^{\frac{1}{2} \sqrt{1+\frac{1}{a^{4}}}}+\ln \sqrt{a^{2}+\sqrt{a^{4}+1}}$
therefore:

$$
A(a)=2 \pi \ln \frac{e^{\frac{1}{2}\left(\sqrt{2}-\sqrt{1+\frac{1}{a^{4}}}\right) \cdot \sqrt{a^{2}+\sqrt{a^{4}+1}}}}{\sqrt[4]{3+2 \sqrt{2}}}
$$

For large values of a this can be approximated
as:

$$
A(a \rightarrow \infty) \approx 2 \pi \ln \frac{e^{\frac{1}{2}(\sqrt{2}-\sqrt{1})} \cdot \sqrt{2 a^{2}}}{\sqrt[4]{3+2 \sqrt{2}}}=2 \pi \ln \frac{e^{\frac{1}{2}(\sqrt{2}-1)} \cdot \sqrt{2} \cdot a}{\sqrt[4]{3+2 \sqrt{2}}} \approx 2 \pi \ln (1.1196 \cdot a)
$$

which is indeed greater than the aforementioned $2 \pi \ln a$.

