One can easily observe two types of periodic behaviour of the sun:

1. a long solar cycle: the year, recognised by the seasons, equinoxes and solstices;
2. a short solar cycle: the day, marked by sunrise, noon and sunset.

Of course the night is similar to the day, but then the sun is "nowhere" and it seems ancient people hardly understood how it spent the night. Moreover, the invisible nighttime sun is useless for measurements. Of course they did know the night was on average as long as the day.

This long solar cycle is of course determined by Earth's orbit around the sun. As seen from Earth, the sun seems to traverse the firmament every year and its apparent path between the stars is called the ecliptic. There is nothing wrong with a geocentric perspective, it is just not the most elegant way to describe the solar system.

It happens to be that the moon follows nearly the same path whilst cycling around the earth, because it orbits in nearly the same plane as the earth around the sun. In one year, the moon orbits Earth 12.37 times, which rounds to 12 . After each lunar orbit the sun has travelled roughly $1 / 12$ of its apparent annual journey along the ecliptic, so the moon divides the ecliptic into 12 equal parts.

Obviously, this number 12 is a purely coincidental value of cosmological origin, but Homo Sapiens seems to have assigned it a special meaning. He divided the ecliptic into 12 constellations: Aries, Taurus, Gemini, Cancer, Leo, Virgo, Libra, Scorpio, Sagittarius, Capricorn, Aquarius and Pisces. Yes, the zodiac signs. Yours is the one that was right behind the sun (from Earth's perspective) when you were born.

The moon divides the long solar cycle into 12 equal parts which we call months (moons); Homo Sapiens divided the short solar cycle into 12 equal parts which we call hours.
The oldest known sundial, found in the Valley of the Kings ${ }^{1}$, already divided the day into 12 hours.

A sundial that is on a south facing east-west wall casts a rather vague shadow during the first \& last hour of the day. You can count on your fingers that this leaves 10 practicable hours per day.

Now take 7 identical smooth-edged round coins. You can easily find out that 6 of them exactly fit around the $7^{\text {th }}$. So a circle fits exactly 6 times around itself, hence it divides itself into 6 equal segments. One could call 6 the circle number.

Now it happens to be that $12=6+6$. As seen from Earth, both the sun and the moon orbit us, yielding 2 apparent circles of 6 segments each, which makes 12 .

The number 360 is a special number. It has 24 divisors,
 including 1 and itself: $[1,2,3,4,5,6,8,9,10,12,15,18,20,24,30,36,40,45,60,72,90,120,180,360]$. This is a GREAT number of divisors and 360 happens to be the smallest number that has so many. Most other not too large numbers do not come near it. This makes 360 very suitable for doing calculations. Homo Sapiens divided the circle into 360 parts. Each of the circle's 6 segments consists of $360 / 6=60$ parts. 60 is also a special number, it is the smallest number with 12 divisors: [1,2,3,4,5,6,10,12,15,20,30,60]. And $360=6 \times 6 \times 10$, the circle number squared times our finger count.

Another cosmological coincidence is that there are roughly 365 days in a year, which quite accurately approximates 360 . So the long solar cycle lasts $365 \approx 360$ short ones, and the daily advance of the sun along the ecliptic nearly exactly equals 1 part of a circle, so one can say a short solar cycle corresponds to 1 part.

A day + night make a full circle, hence the short solar cycle (from sunrise to sunset) consists of 180 parts. This means that during the day, the sun advances by 180/12 = 15 parts per hour.

As said, the moon orbits the earth 12 times a year, so a month lasts 30 short solar cycles (coincidentally, $30=5$ [fingers on one hand] $\times 6$ [the circle number]), yielding a daily advance of the moon by $360 / 30=12$ parts. Now consider the first visible crescent after it has been new moon (originally, that was the new moon) just after sunset. Moonset will be a bit later than sunset and the

[^0]intermediate time span is called the moonshine duration. Next day the moon has advanced by 12 parts (away from the sun) which relates to the hour as $12 / 15=4 / 5$. Hence the moonshine duration grows with $4 / 5$ of an hour each day. In the second half of the month, past full moon, the moonshine duration is the time between moonrise and sunrise, which then has a daily decline of $4 / 5$ of an hour. So every day the moonshine duration changes by $4 / 5$ of an hour, hence the moon divides the hour into fifths and a fifth of an hour is called a point ${ }^{2}$.

A day has 12 hours and there are 5 points per hour. That makes 60 points per day. A day also corresponds to 1 part of a circle, hence the moon divides the parts of a circle into 60 small parts, which is the $2^{\text {nd }}$ appearance of the number 60 . It also was the number of parts per circle segment, remember? But now it is a subdivision of the parts. So the circle consists of 360 parts and it divides itself into 6 segments of 60 parts each, and each part is divided into 60 small parts by the moon.

 called 'H M $\varepsilon \gamma \alpha ́ \lambda \eta \eta$ Lúv $\tau \alpha \xi \iota \varsigma$ (Hē Megalē Syntaxis = The Great Treatise). The superlative of M (Megalē = Great) is Meviorn (Megístē = Greatest). In Arabic this became المجسطي =al-majisțī, which in the $12^{\text {th }}$ century was Latinised to Almagestum by Gerardus Cremonensis. Nowadays it is called the Almagest. In it, Ptolemy divides the circle into 360 parts and he uses the sexagesimal system for their subdivision. That is, each part is divided into 60 small parts (Latin: Pars Minuta $=$ Small Part), which are divided once again into 60 even smaller parts (Latin: Pars Minuta Secunda = Next Small Part). Nowadays we call the part and its fractions a degree, a minute of arc, and a second of arc.

Please note this is about angles. But in the late middle ages mechanical clocks appeared, with just one hand, indicating the 12 hours. Once Christiaan Huygens had invented the pendulum clock another hand was added which did a full revolution in 1 hour, passing each of the 12 hour marks. And although I have - as yet - never found an image of an original medieval one-hand clock with its hours divided into 5 points (which would be suitable for measuring the duration of the moonshine), this extra hand's full circle does consist of $12 \times 5=60$ points, which then divides the hour into 60 small parts. It turned the Pars Minuta (which already indicated $1 / 60$) into a unit of time. When clocks became even more accurate, they got yet another hand, dividing it into 60 once again, turning the Pars Minuta Secunda into a unit of time as well. It enabled all $19^{\text {th }}$ century vest pocket watches to show an exactly different time, where everyone's own watch of course was the only correct one. So obviously, the third hand is the second hand, the second hand is the minute hand, and the minute hand is the hour hand (but originally, the minute hand was the minute hand) $\cdot:$.

The underlying coincidental cosmological facts are Earth's axial rotation and her orbit around the sun, yielding the so-called tropical year of 365.2422 days $(365 d+05: 48) \approx 360$, resulting in 1 part $=$ degree per day, and the synodic month of 29.5306 days $(29 \mathrm{~d}+12: 44) \approx 30=360 / 12$, yielding 12 months per year, 12 zodiac signs, 12 hours per day and 5 points per hour $=60$ points per day $=60$ small parts per part $=$ minutes of arc.

Mathemagical facts are the circle dividing itself into 6 segments, $360=6 \times 60=6 \times 6 \times 10$, and 360 having 24 divisors. Hmm, that equals $12+12$. Sed hypothefes non fingo.

And now this: the firmament contains a number of heavenly celestial objects upwards in the sky above our heads whose positions continuously vary relative to all others. These others are called the fixed stars and the ancient Greeks called the ones with varying positions: $\pi \lambda \alpha v \eta \dot{\eta} \tau \eta \rho$ (planétēs = wanderer). Yes, they are the planets! The classical planets, that is. With the naked eye, i.e. without a telescope or so, you can see: the sun, the moon, Mercury (if you're lucky), Venus, Mars, Jupiter, and Saturn. Yes, to the ancient Greeks the sun and the moon were planets as well. They do not have fixed positions. Please count these classical planets, as well as the number of days in a week.

In 1987, the

[^1]In 1987, the Dutch historian Marijke Gumbert-Hepp wrote her thesis about the Computus Magistri Jacobi ${ }^{3}$ (Computus by Master Jacob), which is a medieval school book from 1436 CE. It contains next:

In ista tabula ostenditur qua hora quilibet planetarum regnat, unde, sicut septem sunt dies in septimana, sic septem sunt planete in quolibet die regnantes et ista inferiores regentes, inter quos tamen unus est predominans in quolibet die suo ordine. Nam quilibet (lege cuilibet) septem dierum deputatum est suus planeta predominans qui incipit suum regimen in prima hora talis diei incipiendo diem a medio noctis. Et alii planete presunt aliis horis secundum illum ordinem secundum quem stant orbes planetarum. Unde ordo planetarum talis est ut Saturnus sit primus, Iupiter secundus, Mars tercius, Sol quartus, Venus quintus, Mercurius sextus, et luna septimus.

In this table is shown at which hour each of the planets reigns, and just as there are seven days in a week, there are seven planets, among whom, although all of them reign every day and perform the lower ruling as well, one of them dominates on turn. For each (read to any) of the esteemed seven days its predominant planet is the planet that rules the first hour of the day, starting at midnight. The other planets rule the successive hours in the order how their orbits are. Therefore the plantary order is: Saturn be the first, Jupiter second, Mars third, Sun fourth, Venus fifth, Mercury sixth, and the moon seventh. [table layout by HR].

Numerus Horarum:	$\mathbf{1}$	2	3	4	5	6	7	$\mathbf{8}$	9	10	11	12	\ldots	19	20	21	22	23	24
Dies Solis:	Sol	Ven	Mer	Lun	Sat	Jup	Mar	Sol	Ven	Mer	Lun	Sat	\ldots	Sat	Jup	Mar	Sol	Ven	Mer
Dies Lune:	Lun	Sat	Jup	Mar	Sol	Ven	Mer	Lun	Sat	Jup	Mar	Sol	\ldots	Sol	Ven	Mer	Lun	Sat	Jup
Dies Martis:	Mar	Sol	Ven	Mer	Lun	Sat	Jup	Mar	Sol	Ven	Mer	Lun	\ldots	Lun	Sat	Jup	Mar	Sol	Ven
Dies Mercuriis:	Mer	Lun	Sat	Jup	Mar	Sol	Ven	Mer	Lun	Sat	Jup	Mar	\ldots	Mar	Sol	Ven	Mer	Lun	Sat
Dies Iovis:	Jup	Mar	Sol	Ven	Mer	Lun	Sat	Jup	Mar	Sol	Ven	Mer	\ldots	Mer	Lun	Sat	Jup	Mar	Sol
Dies Veneris:	Ven	Mer	Lun	Sat	Jup	Mar	Sol	Ven	Mer	Lun	Sat	Jup	\ldots	Jup	Mar	Sol	Ven	Mer	Lun
Dies Saturni:	Sat	Jup	Mar	Sol	Ven	Mer	Lun	Sat	Jup	Mar	Sol	Ven	\ldots	Ven	Mer	Lun	Sat	Jup	Mar

Read the table line by line to recognise the hourly order of the planets by descending orbital periods: Sat: 29.5 y , Jup: 11.9 y , Mar: 1.9 y , Sun: 1 y , Ven: $225 \mathrm{~d}=0.6 \mathrm{y}$, Mer: $88 \mathrm{~d}=0.2 \mathrm{y}$, Lun: $30 \mathrm{~d}=0.08 \mathrm{y}$. Yes, as seen from Earth, the sun orbits us once a year! Then read the column of the first hour of each day. And although Saturn be the first planet in the order of their orbits, the first day of the week is Sunday. Please note: the $8^{\text {th }}$ hour has the same ruling planet $\&$ it starts at $7 \mathrm{AM}=$ one hour after sunrise, the effective start of the day. But according to ISO 8601:2004(E), Monday is the first day of the week. After all, Sunday is part of the weekend, isn't it? See next list of days of the week in various languages (as well as in that weird collection of silly sounds they eall English (;)).

Latin	Italian	French	Spanish	Rumanian	Portuguese	Hebrew	English	Germanic deity
Dies Solis	domenica	dimanche	domingo	duminica	domingo	$1^{\text {st }}$ day	Sunday	
Dies Lunæ	lunedi	lundi	lunes	luni	segunda feira	$2^{\text {nd }}$ day	Monday	
Dies Martis	martedi	mardi	martes	marti	terça feira	$3^{\text {rd }}$ day	Tuesday	Tiwaz (war)
Dies Mercurii	mercoledi	mercredi	miércoles	miercuri	quarta feira	$4^{\text {th }}$ day	Wednesday	Wodan (frenzy)
Dies Iovis	giovedi	jeudi	jueves	joi	quinta feira	$5^{\text {th }}$ day	Thursday	Thor (thunder)
Dies Veneris	venerdi	vendredi	viernes	vineri	sexta feira	$6^{\text {th }}$ day	Friday	Frigg (love)
Dies Saturni	sabato	samedi	sábado	sambata	sábado	Sabbath	Saturday	

Please lookup the Roman deities yourself and compare their "specialties" to those of their Germanic "cousins". And note: the Italian/French/Spanish/Rumanian/Portuguese words for Sunday have nothing to do with the sun, but with Latin Dominus = Lord, so it means day of the Lord. The jews obviously do not celebrate the Christian Lord, they celebrate G-d on the Sabbath. The Portuguese use practically the same day names as the jews, but they included the day of the Lord.

To my knowledge there has never ever been a "hiccough" in the succession of the days of the week as far as can be determined by historical evidence. And for the Dutch reader: nou weet je eindelijk ook eens wat een "zater" is: zaterdag = saturnusdag. And Venus, the goddess of \triangle, the brightest in the sky after $\$ \& \mathbb{C}$, is (alternately) either the morning star or the evening star. Each lasts 9 months.

[^2]
[^0]: ${ }^{1}$ https://en.wikipedia.org/wiki/History of sundials

[^1]: ${ }^{2}$ https://www.dbnl.org/tekst/gumb002comp01 01/ Marijke Gumbert-Hepp, Computus Magistri Jacobi, dissertation (1987) in Dutch containing original texts in Latin (she translated punctum to stip in Dutch, but punt is closer to the original).

[^2]: ${ }^{3}$ https://www.dbnl.org/tekst/gumb002comp01 01/ (in Dutch)

