

## Twin

# Twin contradiction! 

# We cannot solve problems with the same way of thinking that created them. 

## Albert Einstein:

A new type of thinking is essential if mankind is to survive and move toward higher levels.
(New York Times - May 25 1946, p. 13 - 'Atomic Education Urged by Einstein')
http://icarus-falling.blogspot.com/2009/06/einstein-enigma.html


# Quid est ergo tempus? <br> Si nemo ex me quærat, scio. Si quærenti explicare velim, nescio. 

Then what is time? When nobody asks me, I know. When I would like to explain it however, I do not know.

> Aurelius Augustinus Hipponensis (CCCLIV - CDXXX) Confessiones 11.14

## Thou shalt not

## contrine concoctions.

gif zult miets uit um duim zuigen.

## Fundamental propositions should be deduced from ascertained truths.

# Tyou shalt not take an inconsistenty for wranted. 

(Gijuzult niet boor zoete kork slikken mat niet te breten is.

Do not accept any unclarity if logic and common sense say it is just impossible.

## Please note:

First part of this presentation is in a perfectly Special Relativistic scenario (which in practice is unachievable), i.e. not a single experimental result can be used as a counterargument.

## Paradox:

## (in a physical sense)

OBSERVED phenomenon that SEEMS impossible.

## E.g. hydrostatic paradox \& M87 jet ${ }^{1}$.

## ${ }^{1}$ See http://henk-reints.nl/astro/HR-Apparent-superluminality.pdf

## Paradox:

something existing that you can't grasp. YOUR insight is insufficient. Not a paradox:
some invention that appears not to exist. YOUR brainchild is झpman
E.g. the Fermi "paradox" is just a too simple-minded thought.

## Twin parado* contradiction:

Impossible outcome of some reasoning: this reasoning or at least one of its premises must be flawed. Not a paradox, but a contradiction; can't be solved; must be rejected.
Calling it a paradox suggests it would be possible, obfuscating any mistake that might exist in the underlying reasoning.
Don't try to explain something impossible that has never been observed!

## Premises: Einstein's postulates: derived from facts of experience without excogitating anything.

He did not try to explain Michelson \& Morley's experimental result, but he drew a conclusion from it.

Moreover:
constancy of speed of light does not need to be postulated ${ }^{2}$ :

$$
c=\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}
$$

[^0]Albert Einstein: Zur Elektrodynamik bewegter Körper. On the electrodynamics of moving bodies. Annalen der Physik, 17 (1905, 891-921) @894:

Wir setzen noch der Erfahrung gemä $B$ fest, da $B$ die Größe

$$
\frac{2 \overline{A B}}{t_{A}^{\prime}-t_{A}}=V
$$

eine universelle Konstante (die Lichtgeschwindigkeit im leeren Raume) sei.

We further establish in agreement with experience, that the speed of light in empty space be a universal constant.

He did not think this up; he drew the most plausible CONCLUSION from a fact of experience, i.e. the result of the Michelson \& Morley experiment;
"if we always measure the same value, then it must be a constant".

Einstein: Zur Elektrodynamik bewegter Körper.
On the electrodynamics of moving bodies.
Annalen der Physik 17 (1905) 891-921:
2. Jeder Lichtstrahl bewegt-sich im „ruhenden" Koordinatensystem mit der bestimmten Geschwindigkeit $V$, unabhängig davon, ob dieser Lichtstrahl von einem ruhenden oder bewegten Körper emittiert ist.

Each ray of light moves in the "stationary" system of coordinates with the determined velocity $V$, independent of whether this ray is emitted by a body at rest or in motion.

Einstein: Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?
Does the inertia of a body depend upon its energy-content?
Annalen der Physik 18 (1905) 639-641:
> 2) Das dort benutzte Prinzip der Konstanz der Lichtgeschwindigkeit ist natürlich in den Maxwellschen Gleichungen enthalten.
> The there used principle of the constancy of the speed of light is of course contained in Maxwell's equations.

## Einstein did not come up with ideas, but concluded from facts of experience:

0 . we always measure the same speed of light in all directions, independent of Earth's motion around the sun, hence it apparently is a universal constant;

1. from his own perspective, each observer perceives the very same laws of nature, not affected by any relative movement of another entity;
2. for every observer, the speed of light equals the just mentioned universal constant, independent of any movement of the light source with respect to him (HR: not any wave velocity depends on that of the source); this is already contained in Maxwell's equations.
Therefore: all observers perceive the very same speed of light w.r.t. themselves, even if they measure the very same ray of light when passing one another at whatever velocity.

The speed of sound under water is about four times greater than in air, so it is not a property of the sound itself, but of the medium through which it propagates. It also is not a property of the sound source, which can cause only a single point of the medium to oscillate and it is the medium itself that transports this oscillation.
Similarly, the speed of light is not a property of light, nor of the light source.
Not any wave velocity depends on the source's speed.
It implies the motion of a sound or light source does not affect the speed of the sound or light itself.

Speed (not pitch) of sound independent of velocity of sound source:
same speed of sound to each observer who does not move w.r.t. the medium through which the sound propagates.

100 km/h (in a car)

Speed (not color) of light independent of velocity of light source:
 WWWWWWWWWWWWWWWWW whw


same speed of light to each observer who does not move w.r.t. the vacuum through which the light propagates.

Since NOTHING \& NOBODY can move w.r.t. vacuum, the speed of light is identical to each \& every observer.

It essentially is the vacuum (Latin for emptyness) itself that manifests identically to each \& every observer.

> It contains nothing by which it could reveal any difference.

It does not have any reference points, so it cannot have any velocity (not even zero!); it cannot manifest any motion w.r.t. whatever. Only the ultimate observer is a useful point of reference.

This simply implies the same speed of light to all observers.

1) Any wave velocity is always with respect to medium, independent of any movement of source or observer.
2) If observers do not move w.r.t. medium, wave velocity is obviously same w.r.t. all observers.
3) Light has ability to propagate through vacuum, i.e. use empty space as a medium, no matter how and why it is able to do so.
4) Not any observer can move w.r.t. vacuum, so all measure same speed of light in empty space.
5) The above suffices to explain M\&M's result without any length contraction. As explanation of M\&M, the latter is even inconsistent with a constant speed of light.

## Please check:

## "The Speed of Light has Absolutely Nothing to Do With Light"

video: https://www.youtube.com/watch?v=UHKZMGdj7cl (Premiered on 24 Sept 2023)
script: https://philosophyengineered.blogspot.com/2021/12/the-speed-of-light-has-nothing-to-do.html
It refers to:
Pelissetto, A. \& Testa, M.:
"Getting the Lorentz transformations without requiring an invariant speed";
American Journal of Physics, 83, 338 (2015) 338-340:
https://aapt.scitation.org/doi/abs/10.1119/1.4901453
https://arxiv.org/pdf/1504.02423.pdf
As well as to the original:
W. von Ignatowsky: "Das Relativitatsprinzip";

Archiv der Mathematik und Physik 17, 1-24 (1911)
transcript: https://de.wikisource.org/wiki/Das Relativit\%C3\%A4tsprinzip (Ignatowski)
original: https://commons.wikimedia.org/wiki/File:IgnatowskiRelativ.djvu
pdf thereof: http://henk-reints.nl/lgnatowskiRelativ.pdf
(all in German, but you can use Google Translate on the Wikisource transcript)
WHY ISN'T THIS TAUGHT EVERYWHERE?

## Photon travels perpendicular distance of

1 light second at universal speed of light:


My point of view: you move, I am stationary; your point of view: I move, you are stationary. Departure and arrival are my events, you see them pass by.

## Time dilation/stretching:

The speed of light being fundamentally identical to each \& every observer independent of their mutual velocity yields:
time spans of fast passerby
appear
longer to stationary observer.

## THE quintessense of relativity:

Due to the speed of light being a universal constant, i.e. identical to each and every observer, YOU and I do not measure the same timespan between two events if we are in relative motion (passing each other).
Each has own perception of time, i.e. THE time does not exist.

## Frequently made BIG mistake:

time would go slower if you are moving very fast. No! No! No!


Time Stops at the Speed of Light. What Does that Mean?

You might have heard that according to Einstein's theories of special and general relativity time doesn't pass for light, or that time.

## Correct ${ }^{3}$ :

Time of fast passerby goes slower for stationary observer, but not for passerby hirself ${ }^{4}$.

[^1]
## Reconsider concept of moving \& stationary observer: someone moves relative to you; you move relative to hir:

 time spans between your events appear longer to hir than to you; time spans between hir events appear longer to you than to hir. Depends on where events occur!YOUR time spans: time spans between YOUR events, as perceived by YOU;
MY time spans: time spans between MY events, as perceived by ME.
YOUR time spans appear longer to ME than to YOURself, MY time spans appear longer to YOU than to MYself.

IFF YOUR time spans identical to MINE then: YOUR time spans appear longer to ME than MY own, MY time spans appear longer to YOU than YOUR own.

IFF we have identical clocks, then: tick rate I see on my clock $\equiv$ what you see on yours.

## Time stretching also applies

 to time spans between consecutive clock ticks, so for a stationary observer, a fast moving clock ticks slower.$$
\begin{gathered}
\text { The faster } \\
\text { the cloek goes, } \\
\text { the slower } \\
\text { the eloek goes. }
\end{gathered}
$$

## From $A$ 's perspective:

$A$ stationary, $B$ moving; $\Rightarrow$
to $A, B$ 's clock is slower.

## From $B$ 's perspective:

$B$ stationary, $A$ moving; $\Rightarrow$

# to $B, A$ 's clock is slower. 

## From both perspectives:

 other clock ticking slower, so when brought back together, then, urh...? Paradox? Something observed? Contradiction! Unless you explain it to a child, but without relying on your authority as an adult!
# Observed: one clock behind other, e.g. unilateral GPS correction: 

 time dilation due to orbital velocity of satellites: clocks in satellites actually tick faster ( $7 \mu \mathrm{~s} /$ day ).> | both behimd She amgther |
| :--- |
| $\begin{array}{c}\text { Nof course not). }\end{array}$ |

## Twin "paradox":

antisymmetrical asymmetry in perfectly symmetrical scenario.
$a<b \wedge b<a \Rightarrow$ NOPE
$a \leq b \wedge b \leq a \Rightarrow a=b$
Observed:
$a<b \wedge b>a \Rightarrow$ fine .

## Special Relativity:

## perfectly symmetrical scenario:

 both observers persistently agree on mutual velocity:$$
v_{B A}=v_{A B}
$$

$$
v_{B A}=\text { velocity of } B \text { as seen by } A,
$$

$$
v_{A B}=\text { velocity of } A \text { as seen by } B .
$$

Disagree? Then
explain it to a child.

## Special Relativity:

## perfectly symmetrical scenario: both observers persistently agree on mutual distance:

$$
d_{B A}=d_{A B}
$$

$$
d_{B A}=\text { distance to } B \text { as seen by } A,
$$

$$
d_{A B}=\text { distance to } A \text { as seen by } B .
$$

Disagree? Then

## YOU <br> explain it to a child.

## Elapsed since passage: <br> $$
\Delta t_{A}=\frac{d_{B A}}{v_{B A}} \& \Delta t_{B}=\frac{d_{A B}}{v_{A B}}
$$ <br> $$
v_{B A}=v_{A B} \& d_{B A}=d_{A B}
$$ <br> $$
\Rightarrow \Delta t_{A} \equiv \Delta t_{B}
$$

## Disagree? Then

## explain it to a child.

## One and same central clock $C$ :



## Both $A$ and $B$ read it,

## both see identical redshift (slowdown)

 by (relativistic) Doppler effect.
## Puzzle:

will they, in this
perfectly symmetrical scenario, perpetually read
exactly the very same value
on one and the very same clock?
If not, then
explain it to a child.

## Only possible conclusion:

both measure exactly same time since passage; respective clock ticks $\mathfrak{A T} \mathbb{C}$ coincide every time, i.e. our clocks continually tick at very same rate.

## "Throwing" periods of coherent light

 from identical light sources; each period = a clock tick.$A$ and $B$ emit exactly same no. of periods;
$A$ receives everything $B$ emits;
$\boldsymbol{B}$ receives everything $\boldsymbol{A}$ emits;
$\boldsymbol{A}$ counts on $\boldsymbol{B}$ 's clock what $\boldsymbol{B}$ counts on $\boldsymbol{B}$ 's clock;
$\boldsymbol{B}$ counts on $\boldsymbol{A}$ 's clock what $\boldsymbol{A}$ counts on $\boldsymbol{A}$ 's clock.
$\Rightarrow$ ultimately: both $A$ and $B$ count very same no. of ticks on both clocks.

Disagree? Then
YOU explain it to a child.

## Proper local frame:

spans entire universe;
only reference points \& directions determined locally;
YOU are stuck in origin,
where all coordinates are zero.

# NOW you started to read 

 this very sentence and precisely NOW you're halfway through but you'll stop reading it right NOW.
## It's always



Semper nunt.

# On your own time line you're stuck in NOW. 

# On your own time line you're stuck in NOW. 

 Already found: stuck in proper origin, where all coordinates are zero.
# $\mathbf{N O W}=$ fixed to origin of proper frame. <br> NOW means: $\boldsymbol{t}=\mathbf{0}$; <br> $t=\mathbf{0}$ means: NOW. 

## ONLY

valid origin of proper frame:
HERE \& NOW
Origin of spacetime!

The past cannot be observed; only pondered retrospectively (or calculated).

## The future cannot be observed; only pondered prospectively (or calculated).

George Berkeley (1685-1753):
Esse est percipi. To be is to be perceived.
HR: exist := being observable, able to interact.
$\therefore$ the past does not exist; the future does not exist; NOW $=\underline{\text { only }}$ point in time that exists (we observe/experience it).

# The only meaningful reference point in time is NOW. 

 NOW is the only meaningful reference point in time. It's stuck in the origin \& the only existing point in time.Sunt enim haec in anima tria quaedam et alibi ea non video. Praesens de praeteritis memoria. Praesens de praesentibus contuitus. Praesens de futuris expectatio.

For there are three things in the soul and elsewhere I do not see them: current memory of the past, current perception of the present, current expectation of the future.

> Aurelius Augustinus Hipponensis (CCCLIV - CDXXX)
> Confessiones 11.20

Upper white area: expected/future events possibly caused by NOW \& HERE Event (NHE);

Pale red area: events having
NO causal connection with NHE; past events cannot yet have been observed;

Lower white area: past events, one of which caused NHE.


# 202120222023 <br> NOW is not 2024 past Christ; Christ was 2024 before NOW. 

By the way: right NOW, we have $\boldsymbol{t}=\mathbf{0}$.

Itsy bitsy teeny weeny practical problem: ALL (historical) documents
(like this very slideshow itself)
would require a yearly update...

## A single event (e.g. a flash of light) can only be observed as it takes place.

Disagree? Then you

## explain it to a child.

## $\Rightarrow$ ALL observers say it occurs NOW (each in their own frame);

 $\Rightarrow$ applies to ANY event; $\Rightarrow$ NOWs in all frames persistently coincide. $\Rightarrow$ The time does exist ${ }^{5}$ ! De tijd bestaat wel dégelijk![^2]
## Suppose

some muon lives for: $10 \Delta t_{\text {life }}=22 \mu \mathrm{~s}$; is born at altitude of: $h=65.6 \mathrm{~km}$; and travels down at: $\gamma \approx 10 \Rightarrow \beta \approx 0.995$;
observation from our perspective occurs NOW in our proper time; genesis was $h / \beta c=$ $220 \mu$ s ago in our proper time;

## Definition: betection := being detected;

## Betection from its perspective occurs NOW in its proper time; our observation \& its betection are one single event $\Rightarrow$ both NOWs coincide.

genesis was $22 \mu$ s ago in its proper time; with $\gamma=10$ we perceive that as $220 \mu \mathrm{~s}$; it perceives $h^{\prime}=h / 10$.

The muon's genesis occurring either 220 or $22 \mu$ s ago whilst it must have been a single event is a
paradox in retrospection due to backward time stretching.

Agree on: observation/betection: NOW; disagree on: how long ago produced.

## Similarly:

moving observer's last clock tick deeper in stationary's past than in moving one's past, but CURRENT clock ticks perpetually coincide;
\& afterwards there is disagreement.

## Both of us will say:

the other one's last clock tick occurred longer ago than my own, although I saw them coincide when they took place.

## THAT is the twin paradox; <br> only in retrospection.

Page 38: on completion of journey, both $\boldsymbol{A}$ and $\boldsymbol{B}$ counted same $N$ ticks on both clocks.

Doppler factor: $\quad \zeta=\sqrt{\frac{1+\beta}{1-\beta}} \quad$ Lorentz factor: $\quad \gamma=\frac{1}{\sqrt{1-\beta^{2}}}$
way out:
$v_{\text {obs } 1}=\frac{1}{\zeta} \cdot v_{\mathrm{em}}, \quad \frac{1}{2} N=\frac{1}{2} \Delta t_{\mathrm{em}} v_{\mathrm{em}}$
$\Delta t_{\text {obs } 1}=\frac{1}{2} N / v_{\text {obs } 1}=\frac{1}{2} \Delta t_{\text {em }} \frac{v_{\text {em }}}{v_{\text {obs } 1}}=\frac{1}{2} \Delta t_{\text {em }} \cdot \zeta$
way back:
$v_{\mathrm{obs} 2}=\zeta \cdot v_{\mathrm{em}}, \quad \frac{1}{2} N=\frac{1}{2} \Delta t_{\mathrm{em}} v_{\mathrm{em}}$
$\Delta t_{\text {obs } 2}=\frac{1}{2} N / v_{\text {obs } 2}=\frac{1}{2} \Delta t_{\text {em }} \frac{v_{\text {em }}}{v_{\text {obs } 2}}=\frac{1}{2} \Delta t_{\text {em }} / \zeta$
together:
$\Delta t_{\mathrm{obs}}=\Delta t_{\mathrm{obs} 1}+\Delta t_{\mathrm{obs} 2}=\frac{1}{2} \Delta t_{\mathrm{em}}\left(\zeta+\frac{1}{\zeta}\right)$

$$
\zeta+\frac{1}{\zeta}=\sqrt{\frac{1+\beta}{1-\beta}}+\sqrt{\frac{1-\beta}{1+\beta}}=\sqrt{\frac{(1+\beta)^{2}}{(1-\beta)(1+\beta)}}+\sqrt{\frac{(1-\beta)^{2}}{(1+\beta)(1-\beta)}}=\frac{1+\beta}{\sqrt{1-\beta^{2}}}+\frac{1-\beta}{\sqrt{1-\beta^{2}}}=\frac{2}{\sqrt{1-\beta^{2}}}=2 \gamma
$$

hence:
$\Delta t_{\mathrm{obs}}=\gamma \Delta t_{\mathrm{em}}$

## On completion of journey, both $\boldsymbol{A}$ and $\boldsymbol{B}$ say it's NOW \&

 both counted ${ }^{6}$ same no. of ticks on both clocks, but for $\boldsymbol{A}, B^{\prime}$ s trip took ${ }^{6}$ longer, so on average, $\boldsymbol{A}$ saw $^{6} \boldsymbol{B}^{\text {'s cher }}$ clock tick slower; it apparently started ${ }^{6}$ earlierand for $\boldsymbol{B}, \boldsymbol{A}^{\prime}$ 's trip took ${ }^{6}$ longer, so on average, $B$ saw $^{6} \boldsymbol{A}^{\text {'s }}$ clock tick slower; it apparently started ${ }^{6}$ earlier. On completion of journey:
agreement on NOW as well as on clock readings but disagreement on how long ago the other one departed.

# THAT is the twin paradox; NOT NOW BUT IN RETROSPECTION. 

[^3]
## Both twins retrospectively

perceive sibling to have been born longer ago, but not earlier (sic) and then have lived slower,
so NOW (i.e. at any moment of observation) they are of the same age.

When a time span starts we call it: NOW; when a time span ends we call it: NOW.

Time dilation: once time span elapsed, observers in relative motion retrospectively disagree on when it started.

## But their mutual NOWs coincided at both start \& end of interval.

THAT is the twin paradox.

Moving observer's last clock tick deeper in stationary's past than in moving one's past.

## Moving observer's next clock tick

 further in stationary's future than in moving one's future.
## Moving observer's past events

 recede faster into stationary's history than into moving one's own history.Moving observer's forthcoming events approach faster from stationary's future than from moving one's own future.

Moving PAST time spans (ending NOW) become stretched AFTER observation,
$\Rightarrow$ clock retrospectively ticked slower, cf. redshift.

Moving FUTURE time spans (starting NOW) undergo contraction BEFORE observation, $\Rightarrow$ clock prospectively ticks faster, cf. blueshift.

## Yes,

approaching from further in future means clock prospectively ticks faster:

NOW I think your next tick
will be in say $1 \frac{1}{2}$ second, but once it occurs, it will coincide with my own next tick, so it'll ultimately have taken just 1 second.

# Moving clock: retrospectively slower \& prospectively faster, but current clock ticks coincide right NOW. 

It's always NOW $\Rightarrow$ all clock ticks in all frames persistently coincide. The time does exist!

An expected moment in the future is not a(n existing) point in time at all.
A remembered moment in the past is not a(n existing) point in time at all.
Only NOW is
a(n existing) point in time (we observe/experience it) and it coincides for ALL observers.

## Relativity of simultaneity:

| $\begin{array}{r} 894 \\ (\ldots . \\ \text { wenr } \end{array}$ | A. Einstein. <br> Die beiden Uhren laufen definitionsgem By definition, both clocks run synchrono $t_{B}-t_{A}=t_{A}^{\prime}-t_{B}$ | synchron, if |
| :---: | :---: | :---: |
| 896 (...) rück gesc | A. Einstein. <br> Considering the constancy of the speed of light, tigung des Prinzipes von der Konstan digkeit finden wir: <br> we find: $\quad t_{B}-t_{A}=\frac{r_{A B}}{V-v}$ | Unter Beder Licht- |
| und | Zur Elektrodynamik bewegter Körper. $t_{A}^{\prime}-t_{B}=\frac{r_{A B}}{V+v}$ |  |

## Relativity of simultaneity:

wobei $r_{A B}$ die Länge des bewegten Stabes - im ruhenden System gemessen - bedeutet. Mit dem bewegten Stabe bewegte Be obachter würden also die beiden Uhren nicht synchron gehend finden, während im ruhenden System befindliche Beobachter die Uhren als synchron laufend erklärèn würden.
where $r A B$ is the moving rod's length in the stationary system.
Comoving observers would see the clocks running asynchronously, whilst stationary ones would declare them synchronous.

906
A. Einstein.
(...)

Es folgt ferner, da $B$ die Lichtgeschwindigkeit $V$ durch Zusammensetzung mit einer „Unterlichtgeschwindigkeit" nicht geändert werden kann. Man erhält für diesen Fall:

It further follows, that the speed of light $V$ cannot be changed by combining it with a subluminal velocity. In this case, one obtains:

$$
U=\frac{V+w}{1+\frac{w}{V}}=V
$$

## Relativity of simultaneity:

Taking the constancy of the speed of light into account
Unter Berücksichtigung des Prinzipes von der Konstanz der Lichtgeschwindigkeit finden wir:

$$
t_{B}-t_{A}=\frac{r_{A B}}{V-v} \quad \begin{gathered}
\text { He does NOT take } \\
\text { it into account! }
\end{gathered}
$$

Zur Elektrodynamik bewegter Körper. 897
und

$$
t_{A}^{\prime}-t_{B}=\frac{r_{A B}}{V+v}, \quad \begin{aligned}
& \text { Once again } \\
& \text { he doesn't. }
\end{aligned}
$$

OOPS! What a terrible mistake!

$$
V \pm v \Rightarrow V, \quad \text { hence: } t_{B}-t_{A}=t_{A}^{\prime}-t_{B}
$$

Since then, everyone has haphazardly parroted him...

# Autoritätsdusel...! 



# Albert Einstein 

 VOLL DANEBEN!
## FALIEKANT

 DAARNEVEN! COMPLETELY MISSED the point!
## What actually occurs:

## on beforehand:

disagreement about when our clock ticks will be;
when the ticks actually take place:
AGREEMENT on both clocks ticking NOW and showing the very same time;

## afterwards:

disagreement on how long ago our clocks ticked,
cf. retrospective disagreement about when the muon was born.
http://henk-reints.nl/u/HR-time-dilation-by-cars-animated.gif (right-click, new tab).

I buy something from a relativistically travelling salesman.
I pay him with my right hand at very same moment I take item with left hand, both my hands touching one another;

He gives item to me with right hand at very same moment he takes money with left hand, his hands touching each other;
"Very same moment" is in each one's proper frame.
We both feel all four hands are in physical contact, \& to both of us, give and take are simultaneous actions.

Would it be a significant difference if his and my
L \& R hands are far apart (arms spread as wide as possible) or close together (touching one another) ?

# Don't tell me the simultaneity of give \& take differs for him and me! Both of us stretch both arms simultaneously in own frame! Both feel both hands of the other at one single point in own time! <br> One single compound event 

 at one single point in both my and his time (NOW) cannot consist of non-simultaneous subevents (i.e. each hand's individual action).Your current clock tick is one single event. Both of us see it when it takes place and call it NOW.

My current clock tick is one single event.
Both of us see it when it takes place and call it NOW.
Both of us call it NOW when your tick occurs \& both of us call it NOW when my tick occurs, hence: $\mathbf{N O W}_{\text {you }} \equiv \mathbf{N O W}_{\text {me }}$ applies to both ticks. IF you see them simultaneously at NOW ${ }_{\text {you }}$, then I must see them simultaneously at $\mathbf{N O W}_{\text {me }}$.

IF I see them simultaneously at NOW ${ }_{\text {me }}$, then you must see them simultaneously at NOW $_{\text {you }}$.

The same applies to any pair of events.

## A single event can only be observed as it takes place \& all say it occurs NOW.

We observe 2 single events that are simultaneous to me:

| NOW $_{\text {me, } 1}$ | $=$ | NOW $_{\text {me, } 2}$ |
| :---: | :---: | :---: |
| $=$ | $\Uparrow$ | $=$ |
| Event 1 | IMPOSSIBLE! | Event 2 |
| $=$ | $\Downarrow$ | $=$ |
| NOW $_{\text {you,1 }}$ | $\neq$ | NOW $_{\text {you, } 2}$ |

Same single events not simultaneous to you?
Euclid, common notions:
1: things equal to the same thing are also equal to one another;
4: things which coincide with one another are equal to one another.

# If events are simultaneous to one observer, they are simultaneous to all observers. 

(apart from differences in light travel time, depending on their distances to both events).

As both simultaneous events occur, all agree about it, but in advance they disputed it \& afterwards they disagree about how long ago the events took place.

## Simultaneity of events is frame independent as the events take place.

Depending on each event's velocity
w.r.t. the observer, they undergo
different time dilation, yielding a bias in how long ago each event occurred.

That is the twin paradox.

Both of us perceive future \& past from own perspective.
You see my events approach faster from your future then you expected \& you see them retreat faster into your past.

I see your events approach faster from my future then I expected \& I see them retreat faster into my past.

But our NOWs perpetually coincide \& our clocks perpetually show the same time.

## Kinematic Time Dilation at $v=c / 2$



## Predictions mutually disagree;

observations mutually agree, but disagree with predictions, so the latter are considered a mistake; postdictions mutually disagree, as well as with observations, thus yielding a paradox.

I see your next clock ticks approach faster from further future than mine.

Your clock tick you call NOW always coincides with my clock tick I call NOW.

I see your past clock ticks disappear faster into deeper history than mine. \& vice versa (regarding you \& me). http://henk-reints.nl/u/HR-time-dilation-by-cars-animated.gif (right-click, new tab).

## Time span

## from somewhere in future

 until somewhere in past(in two days, tomorrow will be yesterday, so the future precedes the past) is dilated stretched and $\neq$ elapsed time!
The latter $=$ no. of clock ticks actually counted on both clocks.

# In your own time (P\&F), your own events are nearer by than passerby's events that actually take place simultaneously with yours. 

You think your own events are


## Time dilation as far as

 observed phenomena are concerned:Time stretching is retrospective, i.e. from NOW backwards in time towards a past event. This applies to any passerby's time span ending NOW. Your and hir NOW perpetually coincide.

It renders a paradox that pretends retrospective asynchronicity of events that actually took place simultaneously.

Time dilation (stretching) is w.r.t. NOW, both towards past \& future. Hir bygone events are deeper in your than in hir past \& hir upcoming events are further in your than in hir future. As an event actually takes place, both say it occurs NOW.

## Photon travels perpendicular distance of <br> 1 light second at universal speed of light:



Departure of light = single event, so we agree it occurs NOW.
Me: it'll take 1 s ; you: it'll take 1.5 s .
You expect arrival further in future.
We prospectively disagree on expected arrival.
Arrival of light = single event, so we agree it occurs NOW. Me: it took 1 s, like I said; you: it took 1.5 s, like I said. You remember departure deeper in past.
We retrospectively disagree on remembered departure.
Discrepancy between expectation and observation; Discrepancy between observation and remembrance.

But when a departure or arrival event takes place, we both agree it occurs NOW.

Passerby's last clock tick appears longer ago than own last tick ${ }^{7}$, yielding more time per tick, so in the past, the other clock apparently ticked slower.

## In the past, the other time seems slower.

Our current clock ticks coincide right NOW.
Passerby's next clock tick will arrive earlier than expected, yielding less time per tick, so in the future, the other clock apparently ticks faster.
In the future, the other time seems faster.
${ }^{7}$ Although they took place simultaneously. That is the twin paradox.

## Facts:

time stretching actually measured; (GPS orbital velocity $\rightarrow 7 \mu \mathrm{~s} /$ day, walking speed $\rightarrow 3^{133} \mathrm{Cs}$ ticks per year) observed clock ticks don't coincide; clocks deviate asymmetrically; New paradox: observed asymmetry in perfectly symmetrical Special Relativistic scenario?

## General Relativity: ASYMMETRY:

## $A$ is inert, $B$ accelerates, NO force is exerted; a force IS exerted.

No matter if the souree of the foree is Mr. Morse's Norsk horse that's of course off course, eating gorse in the courts of coarse lords who divoreed without remorse on the Azores, or a lift or rocket engine that exhorts with roars in chords of fourths; and who ignores we can endorse gravitation in all sorts of astronomical ports?

## Gravitational time dilation/stretching: in $A$ 's frame, $B$ 's acceleration lasts longer than in $B$ 's frame.

## During $B$ 's acceleration, $A$ 's time advances more, $B$ 's time advances less; result: BIAS in their NOWs:

$$
\begin{gathered}
\Delta t_{N O W}=t_{A}-t_{B}=\Delta t_{A}\left(1-\gamma^{-1}\right)=\Delta t_{B}(\gamma-1) \\
\text { depends only on } \\
\text { duration of acceleration \& resulting velocity. }
\end{gathered}
$$

## Gravitational time dilation:

$$
\Delta t_{\text {dist }}=\Delta t_{\text {grav }} / \sqrt{1-2 G M / r c^{2}}
$$

Equivalence Principle $\equiv$ conservation of energy:

$$
\begin{aligned}
\sqrt{1-2 G M / r c^{2}} & =\sqrt{1-v^{2} / c^{2}} \\
G M m / r & =\frac{1}{2} m v^{2}
\end{aligned}
$$

## Accelerational time dilation:

$$
\Delta t_{\text {inert }}=\Delta t_{\text {accel }} / \sqrt{1-v^{2} / c^{2}} \therefore \Delta t_{\text {accel }}=\Delta t_{\text {inert }} / \gamma
$$

BIAS in the NOWs:

$$
\Delta t_{N O W}=\Delta t_{\text {inert }}-\Delta t_{\text {accel }}=\Delta t_{\text {inert }}(1-1 / \gamma)=\Delta t_{\text {accel }}(\gamma-1)
$$

## BIAS in NOWs

is not the best name, since our NOWs perpetually coincide; when observing a single event, we both say it occurs NOW; it actually is the acquired age difference,
persists
after end of acceleration; if $B I A S \neq 0$
(no matter how infinitesimally smalas orongestu- ..) then:

## Kinematic time dilation has become asymmetrical:

$B$ shifted into $A$ 's past; $A$ shifted into $B$ 's future; $\Rightarrow A$ retrospectively observes $B$;
$\Rightarrow A$ sees $B$ 's
heart beat slower.
$\Rightarrow B$ prospectively observes $A$;
$\Rightarrow B$ sees $A$ 's
heart beat faster.

Clock that underwent acceleration persistently ticks $\gamma$ times slower than clock that remained inert. Both experience proper time as normal.

http://3.bp.blogspot.com/-AfjVnR Alv8/VRkGyJb1gxl/AAAAAAAABvI/OymtWdcZOBI/s1600/Bingo.jpg
https://www.fundcalibre.com/wp-content/uploads/2019/07/AdobeStock 85284311.jpeg
After $B$ 's acceleration ended (engine turned off):
Asymmetric kinematic time dilation:
$A$ sees $B$ 's clock tick slower (by $\gamma$ );
$B$ sees $A$ 's clock tick faster (by $\gamma$ ). Just how it is indeed observed (GPS!).
https://www.spacecentre.nz/resources/faq/spaceflight/how-long-to-reach-space.html:
Space shuttle reached orbit in: $81 / 2$ minutes (Soyuz = similar); orbital velocity: $27600 \mathrm{~km} / \mathrm{h}$ : $\Delta t_{N O W}=(81 / 2 \mathrm{~min})\left(1-\gamma^{-1}\right) \approx 0.17 \mu \mathrm{~s}$. This nonzero BIAS in the NOWs is barely part of final age difference, but causes kinematic time dilation to be asymmetrical during inert orbital motion for half a year in ISS: $\Delta$ age $=(180$ days $)\left(1-\gamma^{-1}\right) \approx 5 \mathrm{~ms}$.

## The clock that underwent the

 greatest acceleration (i.e. on which greatest force was exerted) runs slower than the other one.Acceleration using Special Relativity (violating E's original $1^{\text {st }}$ postulate):

## I am stationary/inert:

your kinetics in my frame:

$$
s, \quad t, \quad v=\frac{d s}{d t}, \quad a=\frac{d^{2} s}{d t^{2}}
$$

## YOU accelerate:

your kinetics in your frame:

$$
s^{\prime}, \quad t^{\prime}, \quad v^{\prime}=\frac{d s^{\prime}}{d t^{\prime}}, \quad a^{\prime}=\frac{d^{2} s^{\prime}}{d t^{\prime 2}}
$$

symmetry premise: $\quad v=\frac{d s}{d t}=v^{\prime}=\frac{d s^{\prime}}{d t^{\prime}} \quad \therefore$ same mutual $\beta \& \gamma$ for both
time stretching:
length contraction:
velocity change: $d t=\gamma d t^{\prime}$
$d s=\gamma^{-1} d s^{\prime}$
$d v=d \frac{d s}{d t}=d \frac{\gamma^{-1} d s^{\prime}}{\gamma d t^{\prime}}=\gamma^{-2} d v^{\prime}$
$v+\Delta v=\frac{v+\Delta v^{\prime}}{1+\Delta \Delta v^{\prime}\left(c^{2}\right.}$ where $\Delta v^{\prime} \rightarrow d v^{\prime} \approx 0$ yields very same)
acceleration:
$a=\frac{d v}{d t}=\frac{\gamma^{-2} d v^{\prime}}{\gamma d t^{\prime}}=\gamma^{-3} a^{\prime} \quad$ please don't see $a^{\prime}$ as
yielding:
i.e.:
$\left(1-\beta^{2}\right)^{-3 / 2} d v=a^{\prime} d t$
$\left(a^{\prime} / c\right) d t=\left(1-\beta^{2}\right)^{-3 / 2} d \beta$
$\boldsymbol{\tau}:=\boldsymbol{a}^{\prime} \boldsymbol{t} / \boldsymbol{c}=\beta / \sqrt{1-\beta^{2}} \quad$ specific force you feel
$\beta=\tau / \sqrt{1+\tau^{2}} \quad \therefore \gamma=\sqrt{1+\tau^{2}}$
we perpetually agree on mutual velocity, but not on its change... (different time spans!) a kinematic quantity but as the (constant)
integration yields:
which renders:

| Your uniform acceleration in |
| :--- | :--- |
| my stationary \& inert frame: |

Series of: $\mathcal{E}_{\mathrm{k}}=\sqrt{1+\tau^{2}}-1$ :
Taylor @ $\boldsymbol{\tau}=0: \quad \frac{\boldsymbol{\tau}^{\mathbf{2}}}{\mathbf{2}}-\frac{\tau^{4}}{8}+\frac{\tau^{6}}{16} \quad+\mathcal{O}\left(\tau^{8}\right)$
Laurent @ $\boldsymbol{\tau}=\infty: \boldsymbol{\tau}-\mathbf{1}+\frac{1}{2 \tau}-\frac{1}{8 \tau^{3}}+\frac{1}{16 \tau^{5}}+\mathcal{O}\left(\frac{1}{\tau^{7}}\right)$
(cf. $\frac{1}{2} m v^{2} \propto t^{2}$ )


$$
(P=F \mathcal{v}) \Rightarrow(\mathcal{P}=\mathcal{F} \beta) \text { (dim.less). }
$$

Just found: $\mathcal{P}=\beta$, yielding: $\mathcal{F}=\mathbf{1}$
Using: $\mu:=\frac{m}{m_{0}}$, we can write N 's $2^{\text {nd }}$ law (dim.less) as:

$$
\mathcal{F}=\mu \alpha=\frac{\sqrt{1+\tau^{2}}}{\left(1+\tau^{2}\right)^{3 / 2}}=\frac{1}{1+\tau^{2}}=\frac{1}{\gamma^{2}} \Rightarrow \lim _{\tau \rightarrow \infty} \mathcal{F}=\mathbf{0}
$$

To avoid this 0 , we could have defined:
$\mathcal{F}:=\gamma^{2} \mu \alpha$
and we obviously have: $\mu=\gamma$, hence:

$$
\mathcal{F}=\gamma^{3} \alpha
$$

Just derived (@p.100):
When defining: the latter renders: $\quad \boldsymbol{F}=\boldsymbol{\gamma}^{\mathbf{3}} \boldsymbol{m} \boldsymbol{a}$ so indeed: hence:
$a=\gamma^{-3} a^{\prime}$
as perceived by moving obs. as observed by stationary obs. without using $\mu=\gamma$ (was not yet derived from anything, but now it is).

## Zur Elektrodynamik bewegter Körper:

des bewegten Elektrons. Wir schreiben die Gleichungen (A) in der Form

$$
\begin{gathered}
\mu \beta^{3} \frac{d^{2} x}{d t^{2}}=\varepsilon X=\varepsilon \dot{X}^{\prime} \\
(\ldots)
\end{gathered}
$$

und bemerken zunächst, $\operatorname{daB} \varepsilon X^{\prime}, \varepsilon Y^{\prime}, \varepsilon Z^{\prime}$ die Komponenten der auf das Elektron wirkenden ponderomotorischen Kraft sind,
(He used $\mu$ for the mass and $\beta$ for the Lorentz factor).
It renders: $\quad F=\gamma^{3} m a=m \gamma^{3} \frac{d^{2} x}{d t^{2}}=m \gamma^{3} \frac{d v}{d t}$ which is the same as what we just found.

## Kinetic energy:

$$
\begin{gathered}
E_{\mathrm{k}}(x)=\int_{0}^{x} F d x^{\prime}=\int_{0}^{x} m \gamma^{3} \frac{d^{2} x^{\prime}}{d t^{2}} d x^{\prime}=m \int \gamma^{3} \frac{d v}{d t} d x \\
v=\frac{d x}{d t} \Rightarrow d x=v d t \\
E_{\mathrm{k}}(t)=m \int_{0}^{t} \gamma^{3} \frac{d v^{\prime}}{d t^{\prime}} v^{\prime} d t^{\prime} \Rightarrow E_{\mathrm{k}}(v)=m \int_{0}^{v} \gamma^{3} v^{\prime} d v^{\prime} \\
v=c \beta \Rightarrow E_{\mathrm{k}}(\beta)=m \int_{0}^{\beta} \gamma^{3} c \beta^{\prime} \cdot c d \beta^{\prime}=m c^{2} \int_{0}^{\beta} \gamma^{3} \beta^{\prime} d \beta^{\prime} \\
\left.\left[u:=\beta^{\prime}\right] \Rightarrow \frac{E_{\mathrm{k}}(\beta)}{m c^{2}}=\int_{0}^{\beta}\left(1-u^{2}\right)^{-3 / 2} u d u=\frac{1}{\sqrt{1-u^{2}}}\right]_{0}^{\beta} \\
\frac{E_{\mathrm{k}}(\beta)}{m c^{2}}=\frac{1}{\sqrt{1-\beta^{2}}}-\frac{1}{\sqrt{1-0^{2}}}=\gamma-\mathbf{1} \\
\boldsymbol{E}_{\mathbf{k}}(\boldsymbol{\gamma})=\boldsymbol{m} \boldsymbol{c}^{\mathbf{2}}(\boldsymbol{\gamma}-\mathbf{1})
\end{gathered}
$$

$$
E_{\mathrm{k}}(\gamma)=m c^{2}(\gamma-1)
$$

920 A. Einstein.
(...)

$$
W=\int \varepsilon X d x=\int_{0}^{v} \beta^{3} v d v=\mu V^{2}\left\{\frac{1}{\sqrt{1-\left(\frac{v}{V}\right)^{2}}}-1\right\} .
$$

$W$ wird also für $v=V$ unendlich groß. Überlichtgeschwindigkeiten haben - wie bei unseren früheren Resultaten - keine Existenzmöglichkeit.

Oops... he omitted $\mu$ after the second equals sign: $\mu \int_{0}^{v} \beta^{3} v d v$

To you, your environment will eventually not further speed up (ceterum censen superluminalitatem esse delendam), whilst you should keep experiencing the force, since your engine keeps running. It will more and more behave like pure gravitation.
If you are the only one undergoing a force, your acceleration is with respect to everything else in the entire cosmos, including very fast distant galaxies. Relativistic velocity addition will eventually yield nearly the same speed $(\sim c)$ with respect to each and every object, hence your velocity gradually becomes absolute, relative to all inert bodies in the universe.
The entire cosmos will ultimately become Lorentz contracted to Sweet Fanny Adams \& you'll smack against the "edge of the universe" at or extremely close to the very speed of light.

Hasta la vista, baby, you'll not be back...

From: $\quad \Delta t_{N O W}=t(1-1 / \gamma) \quad$ we obtain: $\quad \Delta \tau_{N O W}=\tau-\tau / \gamma$
so your proper time: $\quad \boldsymbol{\tau}^{\prime}=\tau-\Delta \tau_{\text {NoW }}=\tau / \gamma=\boldsymbol{\tau} / \sqrt{\mathbf{1}+\boldsymbol{\tau}^{2}}=\boldsymbol{\beta}$
Now your engine makes you accelerate at $\boldsymbol{a}^{\prime}=\boldsymbol{g}$ as if you're on Earth.
Then:

$$
\beta=\frac{g t}{c} / \sqrt{1+\left(\frac{g t}{c}\right)^{2}}=\frac{g t}{\sqrt{c^{2}+g^{2} t^{2}}} \quad \text { and: } \gamma=\sqrt{1+\frac{g^{2} t^{2}}{c^{2}}}=\sqrt{\frac{c^{2}+g^{2} t^{2}}{c^{2}}}
$$

hence:

$$
\Delta t_{\text {NOW }}=t(1-1 / \gamma)=t-\frac{c t}{\sqrt{c^{2}+g^{2} t^{2}}}=\boldsymbol{t}-\frac{\boldsymbol{c}}{g} \cdot \sqrt{\frac{(g t)^{2}}{(g t)^{2}+c^{2}}}
$$

Long duration: $\quad t \rightarrow \infty \Rightarrow \Delta t_{N O W} \approx t-\frac{c}{g} \quad$ your pr. time
Subtracting $\Delta \boldsymbol{t}_{\text {NOW }}$ from my proper aging $t$ yields your proper aging $\boldsymbol{t}^{\prime}=\boldsymbol{t}-\Delta \boldsymbol{t}_{\text {NOW }} \approx \boldsymbol{c} / \boldsymbol{g} \approx 30570323 \mathrm{~s} \approx 353 \mathrm{~d} 19: 45: 23$ ( $\approx 1$ lunar year, i.e. 12 moons, how nice!) after a (very) long (in my proper time) acceleration.
Conventional calculation: $\quad t\left(t^{\prime}\right)=\frac{c}{g} \sinh \left(\frac{g}{c} t^{\prime}\right) \quad \therefore \quad t^{\prime}=\frac{c}{g} \operatorname{arsinh}\left(\frac{g}{c} t\right)$
yields:

$$
\Delta t_{N O W}=t-t^{\prime} \approx t-\frac{c}{g} \ln \left(\frac{g t}{c}+\sqrt{\frac{(g t)^{2}+c^{2}}{c^{2}}}\right)
$$

Long duration: $\quad t \rightarrow \infty \Rightarrow \Delta t_{N O W} \approx t-\frac{c}{g} \ln \frac{2 g t}{c} \quad$ factor $\ln \frac{2 g t}{c}$ ?


Standstill of your proper time: time necessary for remaining distance approaches nought as $v \rightarrow c$, cf. light not experiencing any time interval. Blue curve is identical to mutual velocity $\beta<1$ as function of $m y$ proper time.

## Uniform acceleration in classical mechanics: <br> $$
v=a t
$$ dimensionless: <br> $$
\beta=\tau
$$

To you, your environment would become sup Elenndal if: $\quad \tau^{\prime}>1$ Can conventional equation: $t\left(t^{\prime}\right)=\frac{c}{g} \sinh \left(\frac{g}{c} t^{\prime}\right)$ or: $t^{\prime}(t)=\frac{c}{g} \operatorname{arsinh}\left(\frac{g}{c} t\right)$ be correct?

It's always NOW, so both $\boldsymbol{t} \& \boldsymbol{t}^{\prime}$ are lookback times to begin of acceleration! Above graph does not show progress of time, but lookback from NOW to start of acceleration!

SHOULD have used delta notation:
$\Delta t^{\prime}=\frac{c}{g} \operatorname{arsinh}\left(\frac{g}{c} \Delta t\right)$ or: $\Delta \tau^{\prime}=\operatorname{arsinh}(\Delta \tau)$
$Y O U_{0}:=$ your prior self, when acceleration was still zero.
Acceleration renders a mutual velocity between $Y_{O O}$ \& $\& \mathrm{YOU}_{0}$, hence time dilation!

## Looking back in time from NOW to when acceleration started:

## Your proper aging

(E.G. accel. started
0.97 years ago):

$$
\Delta \tau_{\text {prop }}^{\prime}=\Delta \tau / \sqrt{\mathbf{1}+\Delta \tau^{2}} \nearrow 1
$$

built up en route (acceleration started
2.1 years ago):

$$
\begin{aligned}
\Delta \tau_{\text {trav }}^{\prime} & =\int_{0}^{\Delta \tau} \frac{d \tau^{*}}{\gamma\left(\tau^{*}\right)}=\int_{0}^{\Delta \tau} \frac{d \tau^{*}}{\sqrt{1+\left(\tau^{*}\right)^{2}}} \\
& =\operatorname{arsinh}(\Delta \tau) \rightarrow \infty
\end{aligned}
$$

My proper aging
(your accel. started $\quad \Delta \tau \quad=\gamma_{\text {Now }} \Delta \tau_{\text {prop }}^{\prime} \rightarrow \infty$
4.0 years ago):

Arsinh not measured at single point in time, nor at single point in space! But NOW we retrospectively disagree on when your acceleration started. Your proper age has grown by 1 year \& I may have aged to near infinity. You won't need more time since $v \rightarrow c$, cf. light not experiencing time. In spite of our (large) age difference, our NOWs still coincide! When observing a single event, we both say it occurs NOW.

Your travelled distance as perceived by me:
with:

$$
v=\frac{c g t}{\sqrt{c^{2}+g^{2} t^{2}}}
$$

we get:

$$
\begin{aligned}
s(\Delta t) & \left.=\int_{0}^{\Delta t} v d t=\int_{0}^{\Delta t} \frac{c g t}{\sqrt{c^{2}+g^{2} t^{2}}} d t=\frac{c}{g} \sqrt{c^{2}+g^{2} t^{2}}\right]_{0}^{\Delta t} \\
& =\frac{c}{g}\left(\sqrt{c^{2}+g^{2} \Delta t^{2}}-c\right)
\end{aligned}
$$

$$
c^{2} / g \approx 0.97 \mathrm{ly} ;
$$

hence:

$$
s(t)=\frac{c^{2}}{g}\left(\sqrt{1+\left(\frac{g t}{c}\right)^{2}}-1\right)
$$

so at $g$, you travelled $\sim 1$ ly after $\sqrt{3}$ years (in my frame). $(\tau=\sqrt{3} \rightarrow \beta=\sqrt{3} / 2 \rightarrow \gamma=2)$
Conventional ${ }^{8}: \quad s\left(t^{\prime}\right)=\frac{c^{2}}{g}\left(\cosh \frac{g t^{\prime}}{c}-1\right)$ (integrated over journey so far)
which equals:

$$
s(t)=\frac{c^{2}}{g}\left(\cosh \left(\operatorname{arsinh} \frac{g t}{c}\right)-1\right)
$$

$$
\left(t^{\prime}=\frac{c}{g} \operatorname{arsinh} \frac{g t}{c}\right)
$$

therefore:

$$
s(t)=\frac{c^{2}}{g}\left(\sqrt{1+\left(\frac{g t}{c}\right)^{2}}-1\right)
$$

Seen by you: $\quad s^{\prime}{ }_{\text {now }}=s_{\text {Now }} / \gamma_{\text {Now }}$ (at 1 single point in time)
you approach $v=c$, so entire universe Lorentz contracted to practically zero!

[^4]
## WHO invented

 to mix frames and expressmy stationary observations in the observed moving body's proper time?

Is that because it's mathematically simpler? Wrong target!

It should be about physical comprehensibility!

A spatial measurement must be done at a single point in time \&
a temporal measurement must be done at a single point in space.

The senseless sinh and cosh resulting from integration should be abandoned.

Resubstituting:

$$
g=a^{\prime}
$$

yields:

$$
s(t)=\frac{c^{2}}{a^{\prime}}\left(\sqrt{1+\left(\frac{a^{\prime} t}{c}\right)^{2}}-1\right)
$$

With $a^{\prime}$ in the denominator, it MUST be that: $\quad \boldsymbol{a}^{\prime} \neq \mathbf{0} \quad$ (note: we started at $v_{0}=0$ )
Modus Tollens would yield:

$$
\left(a^{\prime}=0\right) \rightarrow\left(v_{0} \neq 0\right) .
$$

Might it be a universal truth
that: zero velocity requires non-zero acceleration and: zero acceleration requires non-zero velocity?

Isn't the latter exactly what the expanding universe is actually doing?
Please forget about accelerated expansion of the cosmos, which is falsified in http://henk-reints.nl/astro/HR-Geometry-of-universe-slideshow.pdf by derivation from observed/measured values, i.e. FACTS.

Classical mechanics: $\quad \Delta s=v_{0} t+\frac{1}{2} a t^{2}$
$a \neq 0 \quad \Rightarrow$ quadratic equation yielding $t$;
$a=0 \wedge v_{0} \neq 0 \Rightarrow$ linear equation yielding $t$;
$a=0 \wedge v_{0}=0 \Rightarrow$ time is indeterminate.
Without anything changing, time would not "exist".
Might it be a universal truth
that: zero velocity requires non-zero acceleration
and: zero acceleration requires non-zero velocity?
Isn't the latter exactly what the expanding universe is actually doing?
Please forget about accelerated expansion of the cosmos, which is falsified in http://henk-reints.nl/astro/HR-Geometry-of-universe-slideshow.pdf by derivation from observed/measured values, i.e. FACTS.

## https://en.wikipedia.org/wiki/Space travel under constant acceleration\#Ship reference frame:

TOTALLY WRONG: QUOTE: At a constant acceleration of 1 g , a rocket could travel the diameter of our galaxy in about 12 years ship time, and about 113,000 years planetary time. If the last half of the trip involves deceleration at 1 g , the trip would take about 24 years. UNQUOTE.
WikipediA refers to: Baez, UCR, "The Relativistic Rocket" (which gives 113242 ly in 12 years): https://math.ucr.edu/home/baez/physics/Relativity/SR/Rocket/rocket.html
Inverse of: $\quad \sigma:=g s / c^{2}=\sqrt{1+\tau^{2}}-1=\mathcal{E}_{\mathrm{k}} \quad$ (cf. $W=F . s$ )
is: $\quad \tau=\sqrt{\sigma} \sqrt{\sigma+2}$
IF: $\quad s=113242 \mathrm{ly} \approx 1.07 \times 10^{21} \mathrm{~m}$
then: $\quad \sigma \approx 116899.2$
hence: $\quad \tau \approx 116899.7$
and: $\quad \tau^{\prime}=\tau / \sqrt{1+\tau^{2}} \approx 1-3.66 \times 10^{-11}$
yielding: $\quad t=c \tau / g \approx 113243$ years (my proper aging, matches Baez)
and: $\quad \boldsymbol{t}^{\prime}=c \tau^{\prime} / g \approx \mathbf{3 5 4}$ days (your proper aging $\ll 12$ years).
With a uniform acceleration of $1 g$, ANY large distance can be travelled in barely 1 year of shiptime. After $t \approx 10$ years in my proper time, you will have reached $\beta \approx 0.995$ and hardly need any more time, cf. light not experiencing its proper time. If you travel far, I will age by about $s / c$.

Had you started accelerating at the big bang, you would by NOW have reached a proper age of just 1 lunar year during which you travelled:

$$
\begin{gathered}
s\left(t_{\mathrm{H}}\right)=\frac{c^{2}}{g}\left(\sqrt{1+\frac{g^{2} t_{\mathrm{H}}^{2}}{c^{2}}}-1\right)=\sqrt{\frac{c^{4}}{g^{2}}+D_{\mathrm{H}}^{2}}-\frac{c^{2}}{g} \\
\text { with: } \frac{c^{2}}{g} \approx 0.07 D_{\mathrm{H}}: \quad s \approx \sqrt{(0.07)^{2} D_{\mathrm{H}}^{2}+D_{\mathrm{H}}^{2}}-0.07 D_{\mathrm{H}} \\
s \approx(\sqrt{1.0049}-0.07) D_{\mathrm{H}} \approx 0.93 D_{\mathrm{H}}
\end{gathered}
$$

as measured by a stationary \& inert observer \& barely 1 ly (you nearly fare at $c$ ) from your own persp. right NOW.

Expanding universe: $D_{\mathrm{H}}=c t_{\mathrm{H}}$
hence: $\quad \boldsymbol{\sigma}\left(\boldsymbol{t}_{\mathrm{H}}\right)=\frac{\boldsymbol{s}\left(\boldsymbol{t}_{\mathrm{H}}\right)}{\boldsymbol{D}_{\mathrm{H}}}=\frac{s\left(t_{\mathrm{H}}\right)}{c t_{\mathrm{H}}}=\frac{c}{g} \sqrt{\frac{1}{t_{\mathrm{H}}^{2}}+\frac{g^{2}}{c^{2}}}-\frac{c}{g t_{\mathrm{H}}}=\sqrt{\mathbf{1}+\left(\frac{c}{g t_{\mathrm{H}}}\right)^{2}}-\frac{c}{g t_{\mathrm{H}}}<\mathbf{1}$

$$
\lim _{t_{\mathrm{H}} \rightarrow \infty} \sigma\left(t_{\mathrm{H}}\right)=1
$$

## THE flaw in the standard interpretation:

Time dilation also applies to time spans between consecutive clock ticks, so for a stationary observer, a fast moving clock ticks slower.

## NO, IT DOESN'T!

It was Einstein himself who introduced this flawed interpretation: http://henk-reints.nl/astro/EinsteinTwinParadox/Einstein-Twin-Paradox.html (right-click \& open in new tab).

Time span between moving ticks
is extended for stat. obs. because next tick is further in future (and approaching faster)
\& last one is deeper in past (retreating more quickly).

In stationary observer's time, a fast moving clock's tick comes from further in the future and goes to deeper in the past.
This single tick passes this elongated time span during stationary's normal time, hence it "travels" faster!
Greater tick distance + greater tick velocity $\Rightarrow$ identical tick rate \& simultaneous ticks; moving clock does not tick slower.
http://henk-reints.nl/u/HR-time-dilation-by-cars-animated.gif (right-click, new tab).

## Passerby's time spans

 are $s t r e t c h e d$ to stationary observer, but do NOT last longer; instead, they pass by faster.
## Clock Hypothesis:

## difference in clock rates would be

 due to kinematic time dilation only \& not gravitational/accelerational.Contradictio in terminis:
asymmetry not caused by only possible cause...
Not a hypothesis, but an assumption, a concoction, not deduced from any ascertained truth (cf. phlogiston), hence to be firmly rejected.
(ALL assumptions arise from nescience $=$ not knowing, so they have nothing to do with science $=$ knowledge).

# Virtual time span between past \& future points in time 

is not the same quantity as elapsed time span!

## VIRTUAL TIME SPAN:

START $\neq$ NOW and/or END $\neq$ NOW; conceived at 1 single point in time.
Elapsed or MEASURED TIME SPAN: counted no. of successively recurring identical elementary events between NOW ${ }_{X}$ and NOW ${ }_{Y}$; measured between 2 separate points in time.

Elementary = not further subdivisable.
How much time elapses between two consecutive elementary events?

## Similarly:

## Lorentz contra(di)ction:

passed length $=$ measured time span $\times$ speed

## $\neq$

physical length $=$ no. of (elem.) things it consists of; e.g. street length expressed in no. of roadside posts does not change, whatever the velocity.
What is the distance between two adjacent elementary thinas (i.e. without any subdivision)?
http://henk-reints.nl/astro/HR-Lorentzcontractie-slides.pdf (in Dutch)

## Fitzgerald-Lorentz, urh, relativistic length contraction:

A witch is passing you. Her broom has head and tail lights that flash when they pass your nose. You know her velocity and you measure the elapsed time between these flashes, i.e. how long the broom takes to pass your nose, yielding:

$$
L_{\mathrm{you}}=\Delta t_{\mathrm{you}} \cdot v
$$

(suffix indicates observer).

## Starting \& stopping YOUR clock are YOUR events.

She sees you moving, so YOUR time span is stretched for HER and she measures:

$$
\Delta t_{\text {she }}=\Delta t_{\mathrm{you}} \cdot \gamma
$$

implying:

$$
\Delta t_{\mathrm{you}}<\Delta t_{\text {she }}
$$

hence:
$L_{\text {you }}<L_{\text {she }}$

## This is relativistic length contraction.

## HER broom's head and tail flashes are HER events.

When the tail flashes, her head flash is already $\Delta t_{\text {you }}$ in your past. Or is it? Since this head flash is HER event, you observe time stretching, which yields:

$$
\Delta t_{\text {retrospective }}=\Delta t_{\text {you }} \cdot \gamma=\Delta t_{\text {she }}
$$

hence:

$$
L_{\text {retrospective }}=L_{\text {she }}
$$

The broom is NOT physically contracted at all, but the virtual length passing a single point in space (your nose) is shorter than the physical length.

The train will NEVER fit in the tunnel.

# Time dilation applies to time spans and not to points in time. 

When measuring the broom at a single point in time,
there is no time span, therefore no time stretching, hence no length contraction.

I measured the witch's velocity as: distance between two milestones that are stationary to me, using my rod, divided by timespan she needed to travel from one to the other in my frame, measured with my clock. But witch's broom's head \& tail are HER milestones!

Measuring with double standards! https://science.nasa.gov/mission/mars-climate-orbiter/

Measured a shorter broom passage duration, but does this imply a shorter broom, or a greater apparent velocity?
$v=\Delta L / \Delta t \quad \therefore \quad \Delta t=\Delta L / v$.
Does a shorter $\Delta t$ imply a contracted $\Delta L$ or an enlarged $v$, as seen by me?
YOU tell how to distinguish!
But you are restricted to deduction from truths!
Did you make an implicit aspampirna?

## Why wouldn't an entity

 having some spatial expanse, but observed at a single point in space, seemingly have its velocity multiplied by the Lorentz factor?
## Does a muon experience a

contracted height difference passing by at same velocity as we see the muon moving,

or does it perceive the

original $\Delta h$ with only itself as a ref. point, i.e. a single point in space at which $\Delta h$ can't be assessed with only a rod, allowing it to show a velocity of $\gamma v$ ?

# Aforementioned symmetry of SR: I measure your speed in my frame 

三you measure my speed in your frame. Both using own ruler \& clock, stationary in own frame.

But this time I want to measure my own speed in your frame. With a measuring rod stationary to me, I assess your speed in my frame, not mine in yours as observed by myself.

## WE see ITS velocity w.r.t. US三 IT sees $\underline{\text { OUR }}$ velocity w.r.t. IT $=\boldsymbol{v}<\boldsymbol{C}$

 WE see $\frac{\text { OUR OWN velocity w.r.t. } \underline{I T}}{\equiv}$ IT sees ITS OWN velocity w.r.t. $\underline{\text { US }}$ $?=\gamma \boldsymbol{v} \rightarrow \infty$ ?
## Celerity $:=\frac{\text { distance, measured when stationary }}{\text { elapsed time, measured when moving }}$

$$
\eta:=\gamma \beta
$$

Celebrity:

https://www.youtube.com/watch?v=ux9ArSigpoA

Uniform acceleration, urh, constant force exerted (see p.100):

$$
\begin{aligned}
\beta & =\tau / \sqrt{1+\tau^{2}} \\
\gamma & =\sqrt{1+\tau^{2}} \\
\therefore \eta & =\tau
\end{aligned}
$$

Naah nah na naah naah!

Length contraction: $\quad \Delta L_{\text {mov }}=\Delta L_{\text {stat }} \sqrt{1-\beta^{2}}$
Totally independent of where the length interval resides, be it behind, around, or before you. Must always multiply entire length interval by contraction factor how it is when observation is made.

Time contraction: $\quad \Delta t_{\text {mov }}=\Delta t_{\text {stat }} \sqrt{1-\beta^{2}}$
Totally independent of when the time interval occurred, be it in the past, present, or future. Must always multiply entire time interval by contraction factor how it is when observation is made.

Aforementioned $\sinh \& \cosh$ to be abandoned for precisely the reason mentioned on last page.
Used Lorentz root that changed during a timespan instead of observing at a single point in time.

Travelled distance seen by stat. obs.:

$$
d \sigma=\beta_{\tau} d \tau=\frac{\tau}{\sqrt{1+\tau^{2}}} d \tau
$$

hence:

$$
\Delta \sigma=\int_{0}^{\Delta \tau} \frac{\tau}{\sqrt{1+\tau^{2}}} d \tau=\sqrt{1+\Delta \tau^{2}}-1=\gamma-1
$$

Moving observer's proper travel time:

$$
\Delta \tau^{\prime}=\frac{\Delta \tau}{\gamma_{\tau}}=\frac{\Delta \tau}{\sqrt{1+\Delta \tau^{2}}} \quad \begin{array}{r}
\text { (apply current } \gamma \text { to } \\
\text { entire travel time) }
\end{array}
$$

Perceived celerity: $\quad \frac{\Delta \sigma}{\Delta \boldsymbol{\tau}^{\prime}}=\frac{\Delta \sigma}{\Delta \tau} \sqrt{1+\Delta \tau^{2}}=\boldsymbol{\beta}_{\boldsymbol{\tau}} \boldsymbol{\gamma}_{\boldsymbol{\tau}}=\boldsymbol{\eta}_{\boldsymbol{\tau}}$

Didn't we already encounter: $\boldsymbol{\tau}:=\boldsymbol{a}^{\prime} \boldsymbol{t} / \boldsymbol{c}=\beta / \sqrt{1-\beta^{2}}$ on p.100?
Doesn't this equal $\eta:=\gamma \beta=\tau$ ?

## Isaacus Newtonus: Natura enim simplex esit.

Celerity: $\quad w:=\gamma v=\frac{v}{\sqrt{1-v^{2} / c^{2}}}$
hence:

$$
v=\frac{w}{\sqrt{1+w^{2} / c^{2}}} \quad \therefore \quad \gamma=w / v=\sqrt{1+w^{2} / c^{2}}
$$

Simply (naively?) use classical mechanics:

$$
\begin{aligned}
& \begin{array}{c}
s=s_{0}+w_{0} t+\frac{1}{2} a^{\prime} t^{2} \\
w=w_{0}+a^{\prime} t
\end{array} \quad \begin{array}{r}
\text { ( } s, t \text { in stationary frame }) \\
\left(a^{\prime}=F / m=\right.\text { specif. force felt by mov. obj.) } \\
\left(s_{0}=0 \& w_{0}=0\right) \Rightarrow s=\frac{1}{2} a^{\prime} t^{2} \quad \& \quad w=a^{\prime} t \quad \& \quad \gamma=\sqrt{1+a^{\prime 2} t^{2} / c^{2}} \\
\text { i.e.: } \quad t
\end{array} \quad \boldsymbol{t}=\sqrt{\frac{2 s}{a^{\prime}}} \quad \therefore \quad \boldsymbol{t}^{\prime}=t / \gamma=\frac{c}{a^{\prime}} \sqrt{\frac{2 a^{\prime} s}{c^{2}+2 a^{\prime} s}}
\end{aligned}
$$

## Equating: $a^{\prime}=g \quad \& \quad s=D_{H}=c / H$

renders: $\quad \Delta t_{\text {stat,inert }}=\sqrt{2 c / g H} \quad \approx 163 \mathbf{3 4 5}$ years $\quad\left(\frac{1}{2} g \Delta t^{2}=D_{\mathrm{H}}\right)$
and: $\quad \Delta t_{\text {accel }}=\frac{c}{g} \sqrt{\frac{2 g}{2 g+c H}} \approx 353 \mathrm{~d} 19: 45: 23 \quad$ (cf. p.107)

$$
\left(t^{2}=\frac{2 s}{a^{\prime}}=\frac{2 c}{g H}\right) \Rightarrow\left[\frac{c}{g} \cdot \sqrt{\frac{(g t)^{2}}{(g t)^{2}+c^{2}}}\right]_{\mathrm{p} \cdot 107}=\frac{c}{g} \cdot \sqrt{\frac{g^{2} \cdot 2 c / g H}{g^{2} \cdot 2 c / g H+c^{2}}}=\frac{c}{g} \cdot \sqrt{\frac{2 g}{2 g+c H}} \text { Q.E.X. }
$$

Also: $\quad v_{\mathrm{fin}}=g \Delta t^{\prime} \quad \approx c-5.27 \mathrm{~mm} / \mathrm{s}$
and:
$w_{\mathrm{fin}}=g \Delta t$
$\approx 168621 \cdot c$

## BUT...

$$
\begin{aligned}
& \text { You accelerated from } \mathbf{0} \text { to } \boldsymbol{v}_{\text {fin }}<\boldsymbol{c} \\
& \text { with an average velocity of: } \\
& \boldsymbol{D}_{\mathrm{H}} / \Delta \boldsymbol{t} \approx 13.77 \times 10^{9} \text { ly } / 163345 \text { years } \\
& \approx \mathbf{8 1 6 6 1} \ggg \ldots \quad \text { HUH? }
\end{aligned}
$$

$\Delta t$ is timespan in my frame after which you actually arrive overthere, but I have not yet observed it!
In order to let me observe your arrival at $D_{\mathrm{H}}$, light must yet travel all the way back, requiring $t_{\mathrm{H}}$, yielding an observed average velocity of:

$$
\frac{D_{\mathrm{H}}}{\Delta t+t_{\mathrm{H}}}=c \frac{t_{\mathrm{H}}}{t_{\mathrm{H}}+\Delta t}<c
$$

She won't seriously see you seemingly exceed $c$ in the seasonal scenery of the scenic cosmic sea, you see?

## In general:

Average velocity of body feeling constant force, observed with stationary \& inert instruments:

$$
\langle v\rangle=\frac{\Delta s}{\Delta t_{\text {light }}+\Delta t_{\text {travel }}}=\frac{s(t)}{\frac{s(t)}{c}+t}=\frac{s}{\frac{s}{c}+\sqrt{\frac{2 s}{a^{\prime}}}}\left(\frac{c / s}{c / s}\right)=\frac{c}{1+c \cdot \sqrt{\frac{2}{a^{\prime} s}}}=\frac{c}{1+\frac{2 c}{a^{\prime} t}}
$$



GraphSketch.com
See also: http://henk-reints.nl/astro/HR-observed-velocity.pdf
which reveals that $\Delta t_{\text {light }}+\Delta t_{\text {travel }}$ should actually be $\sqrt{\Delta t_{\text {light }}^{2}+\Delta t_{\text {travel }}^{2}}$.

Total travel distance gets more and more contracted as your own velocity increases.
Doesn't this imply the end point is approaching you at a(n increasing) rapidity on top of your own speed?

Celerity is the superposition of this rapidity and your velocity.
Since rapidity \& celerity are not ordinary velocities, they may well exceed the speed of light.

See also: http://henk-reints.nl/astro/HR-velocity-celerity-rapidity.pdf

## Does light,

from its own perspective, perceive zero travel distance or an infinite velocity?

Physical length of road: no. of roadside posts is totally independent of any velocity! Light "sees" \#posts > 0 passing by in zero time!

Please rethink "spooky action at a distance"...

Doesn't the whole concept of length contraction sprout from what Einstein described as Fitzgerald's \& Lorentz's ad hoc assumption that appeared only as an artificial means to save the theory? ${ }^{9}$

# Fabrications may render a flawed but persistent concept, restricting one's open-minded view \& independent lateral thinking! 

[^5]
## THE flaw regarding length contraction:

$L=v \Delta t$ between two $\mathfrak{e v e n t s}$ at two different points in time and one single point in space is not the same concept as: distance between two things at two different points in space and one single point in time.

## Virtual time span $\neq$ elapsed time span $=$ no. of $\mathfrak{e v e n t s}$.



Virtual (passed) length $\neq$ physical length $=$ no. of things.

## Throughout history,

we have naively equated
two different concepts of time as well as

## two different concepts of length.

Virtual time span: Virtual length:
indirect value; calculated. indirect value; calculated.

Elapsed time span (physical duration): directly counted no. of
consecutive identical elementary $\mathfrak{e b e n t s}$.

## Physical length:

directly counted no. of adjacent identical elementary things.

Elementary $\mathfrak{c b e n t}=$
interaction between elementary things
(relates distance to time, so it somehow involves the speed of light).

## EMPTY time span :=

between consecutive elementary enents;

## EMPTY length :=

between adjacent elementary things.

## Conjecture:

time stretching \& length contraction apply only to EMPTY time spans or lengths (the tare duration or distance).

## Length contraction in Schwarzschild metrics

Distance from a thing to $M$ as observed from infinity: $\rho=\frac{r}{r_{\mathrm{S}}} \therefore r=\rho r_{\mathrm{S}} \therefore d r=r_{\mathrm{S}} d \rho$; we'll consider only: $\rho>1$ Distance from thing to $M$ as perceived by thing: $\varrho=\frac{r^{*}}{r_{\mathrm{S}}}$
$a$ and $b$ are distances to $M$ as perceived from infinity; proper length between $a$ and $b\left(b>a, \alpha=\frac{a}{r_{\mathrm{s}}}, \beta=\frac{b}{r_{\mathrm{s}}}\right)$ :

$$
\begin{array}{l|l}
\Delta r=b-a & \Delta r^{*}=\int_{a}^{b} \sqrt{1-\frac{r_{\mathrm{S}}}{r}} d r=r_{\mathrm{S}} \int_{\alpha}^{\beta} \sqrt{\frac{\rho-1}{\rho}} d \rho \\
\Delta \rho=\beta-\alpha & \Delta \varrho=\int_{\alpha}^{\beta} \sqrt{\frac{\rho-1}{\rho}} d \rho
\end{array}
$$

## https://www.integral-calculator.com/ yields:

$$
\Delta \varrho=\int_{\alpha}^{\beta} \sqrt{\frac{\rho-1}{\rho}} d \rho=\left[\frac{2 \sqrt{\frac{\rho-1}{\rho}} \rho-\ln \left(\sqrt{\frac{\rho-1}{\rho}}+1\right)+\ln \left(\left|\sqrt{\frac{\rho-1}{\rho}}-1\right|\right)}{2}\right]_{\alpha}^{\beta}
$$

We have: $\quad \rho>1 \& \sqrt{\frac{\rho-1}{\rho}}<1$, hence: $\left|\sqrt{\frac{\rho-1}{\rho}}-1\right|=-\left(\sqrt{\frac{\rho-1}{\rho}}-1\right)=1-\sqrt{\frac{\rho-1}{\rho}}$
so: $\Delta \varrho=\left[\sqrt{\rho^{2}-\rho}+\frac{1}{2} \ln \frac{1-\sqrt{\frac{\rho-1}{\rho}}}{1+\sqrt{\frac{\rho-1}{\rho}}}\right]_{\alpha}^{\beta}=\left[\sqrt{\rho^{2}-\rho}+\frac{1}{2} \ln \frac{\sqrt{\frac{\rho}{\rho}}-\sqrt{\frac{\rho-1}{\rho}}}{\sqrt{\frac{\rho}{\rho}}+\sqrt{\frac{\rho-1}{\rho}}}\right]_{\alpha}^{\beta}=\left[\sqrt{\rho^{2}-\rho}+\frac{1}{2} \ln \frac{\sqrt{\rho}-\sqrt{\rho-1}}{\sqrt{\rho}+\sqrt{\rho-1}}\right]_{\alpha}^{\beta}$

$$
\text { hence: } \left.\left.\Delta \varrho=\left[\sqrt{\rho^{2}-\rho}+\frac{1}{2} \ln \ln \frac{(\sqrt{\rho}-\sqrt{\rho-1})(\sqrt{\rho}-\sqrt{\rho-1)}}{(\sqrt{\rho}+\sqrt{\rho-1})(\sqrt{\rho}-\sqrt{\rho-1})}\right]_{\alpha}^{\beta}=\left[\sqrt{\rho^{2}-\rho}+\frac{1}{2} \ln \frac{(\sqrt{\rho}-\sqrt{\rho-1})^{2}}{\rho-(\rho-1)}\right]_{\alpha}^{\beta}\right)\right]_{\alpha}^{\beta}
$$

## Final result:

$$
\Delta \varrho=\sqrt{\beta^{2}-\beta}-\sqrt{\alpha^{2}-\alpha}+\ln \left(\frac{\sqrt{\beta}-\sqrt{\beta-1}}{\sqrt{\alpha}-\sqrt{\alpha-1}}\right)
$$

total of all gradually shrinking distances between successive roadside marker posts, measured individually when they pass your (accelerating) car at diff. moments.
But at any single point in time, each and every (longitudinal) distance is Lorentz contracted (you're in free fall) to you by the very same factor corresp. to speed at that moment, including between ANY pair of successive marker posts!

Entire street length as seen at a single point in time differs from total street length you see passing under your car while travelling during some time span.

## $\ln \left(\frac{\sqrt{\beta}-\sqrt{\beta-1}}{\sqrt{\alpha}-\sqrt{a-1}}\right) \quad$ is due to not measuring at a single point in time nor at a single point in space.

As seen from $b: \quad \Delta \rho_{b}=(\beta-\alpha) \sqrt{1-1 / \beta}=\sqrt{\beta^{2}-\beta}-\sqrt{\alpha^{2}-\alpha(\alpha / \beta)}$ as seen from $a$ : $\Delta \rho_{a}=(\beta-\alpha) \sqrt{1-1 / \alpha}=\sqrt{\beta^{2}-\beta(\beta / \alpha)}-\sqrt{\alpha^{2}-\alpha}$ measured while travelling: $\quad \Delta \rho_{t}=\sqrt{\beta^{2}-\beta}-\sqrt{\alpha^{2}-\alpha}+\ln \left(\frac{\sqrt{\beta}-\sqrt{\beta-1}}{\sqrt{\alpha}-\sqrt{\alpha-1}}\right)$

$$
a<b \rightarrow \Delta \rho_{a}<\Delta \rho_{t}<\Delta \rho_{b}
$$

## TRUE street length: no. of marker posts

(but what is the distance between successive posts?)
As seen from position $\rho$ at single point in time: entire road appears contracted by: $\sqrt{1-1 / \rho}$, yielding:
$\rho \sqrt{1-1 / \rho} ;$
distance to $M$ as perceived by thing: $\quad \varrho=\sqrt{\boldsymbol{\rho}^{2}-\boldsymbol{\rho}}$.

## Another conufinsg thing: "time" is a homonym in many languages.

At a time I pondered time for some time; a point in time; time as such; a time span; solution: be explicit! (tvs. $\Delta t$ )

## CONSISTENT;

## STRAIGHT FORWARD REASONING;

## NO IMPOSSIBILITIES;

NO FABRICATIONS;
IN AGREEMENT WITH OBSERVATIONS.


It is the fate of every truth to be an object of ridicule when it is first acclaimed.

- Albert Schweitzer -


## See also:

http://henk-reints.nl/astro/HR-Lorentzcontractie-slides.pdf (this presentation is in Dutch, sorry for that).

## Henk Reints

Henk-Reints.nl


[^0]:    ${ }^{2}$ Albert Einstein: "Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?", footnote 2 on $1^{\text {st }}$ page. Annalen der Physik, Band 323, Nr. 13, 1905, 639-641.

[^1]:    ${ }^{3}$ Although this very presentation will reveal it is not really correct.
    ${ }^{4}$ "hir" = her/him/his ("i" pronounced as in Kick this slick brick, Jim Smith, hit it!)

[^2]:    ${ }^{5}$ Exist in the meaning of being present in the universe.

[^3]:    6: please note it's in the past tense!

[^4]:    ${ }^{8}$ https://en.wikipedia.org/wiki/Space travel under constant acceleration

[^5]:    ${ }^{9}$ A. Einstein: Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen. Jahrbuch für Radioaktivität und Elektronik, 4 (1907), 411-462.

