Created: 2020-07-29, last update: 2022-03-31
In this document, the universe is considered a glome, see
http://henk-reints.nl/astro/HR-Geometry-of-the-Universe-v2b-20200625T0907Z.pdf.

Hubble constant

In this document, the Hubble constant is presumed to be $H_{0}=71 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$, yielding $t_{H}=13.77 \mathrm{Ga}$.

Mass of the universe

Subaru Deep Field:

object count:	$N_{S D F}$	$=1400107$	
area:	$\Omega_{\text {SDF }}=30^{\prime} \times 37^{\prime}$	$=9.39 \times 10^{-5}$	sr
estim. full sky count:	$4 \pi \cdot \frac{N_{\text {SDF }}}{\Omega_{\text {SDF }}}$	$\approx 1.87 \times 10^{11}$	

Hubble Ultra Deep Field:

object count:	$N_{H U D F}$	$=10040$
area:	$\Omega_{H U D F}=2.4^{\prime} \times 2.4^{\prime}$	$=4.87 \times 10^{-7} \quad \mathrm{sr}$
estim. full sky count:	$4 \pi \cdot \frac{N_{H U D F}}{\Omega_{H U D F}}$	$\approx 2.59 \times 10^{11}$.

Estimated mean full sky object count:
arithmetic:

$$
\begin{array}{ll}
N_{5}=\frac{1.87+2.59}{2} \times 10^{11} & =2.23 \times 10^{11} \\
N_{5}=\sqrt{1.87 \times 2.59} \times 10^{11} & =2.20 \times 10^{11} .
\end{array}
$$

geometric:
Estimated average galaxy mass:

as the total mass of the universe, recognising that intergalactic matter matters, as a matter of fact.
The Hubble distance is related to the entire universe, which is a vast amount of matter. And that is the very first item in Newtons Principia: Definitio I: Quantitas Materiæ est mensura etc. It is what he defined as mass. And which lengths or distances are fundamentally related to mass? The Schwarzschild radius and the Compton wavelength. The latter doesn't seem very useful as far as the Hubble distance is concerned, does it?
The universe is a glome ${ }^{1}$. Ex obfervatis phænomenis deductum eft \& hypothefes non finxi. Then its barycentre is nowhere inside it, so it is meaningless to consider it a black hole on itself, but its total mass does yield what I will call a Schwarzschild distance. This directly links the entire universe to the speed of light and so does the Hubble distance. Wouldn't it be plausible to equate them?
In a glome, one very specific distance exists, which is its antipodal distance, the greatest possible distance between any pair of objects.
Wouldn't it be in disagreement with the Cosmological Priciple if the universe would have several different distances that are all very specific for the entire universe itself? There would be either an

[^0]overlap or a hole around the antipodal point. Please realise that any point is also an antipodal point, including our own location, and we do not observe such an overlap or hole in the universe around us, do we?
Therefore both the Hubble distance and the Schwarzschild distance of the universe must be equal to the antipodal distance, hence also to one another. Then we can calculate what I will call the HubbleSchwarzschild mass of the universe.

We have:

$$
\begin{equation*}
r_{S}=\frac{2 G M_{H S}}{c^{2}}=D_{H}=\frac{c}{H_{0}} \tag{3}
\end{equation*}
$$

$$
=1.30 \times 10^{26}
$$

metres
hence: $\quad M_{H S}=\frac{c^{3}}{2 G H_{0}}$
$=8.77 \times 10^{52} \quad \mathrm{~kg}$.
Please compare [2] and [3] and of course they do not exactly match.
As stated on https://en.wikipedia.org/wiki/Schwarzschild radius\#Parameters as of 2020-08-27, the "observable universe" would have ${ }^{2,3} r_{S} \approx 13.77$ Gly (hey, isn't that D_{H} ?) and $M=8.8 \times 10^{52} \mathrm{~kg}$ (hey, isn't that the same as [3]?).

$$
\begin{equation*}
\text { Might it be fundamental that } M_{U} \equiv M_{H S} \text { ? } \tag{4}
\end{equation*}
$$

In my main treatise ${ }^{4}$ I estimated: $M_{U}=4 \times 10^{53} \mathrm{~kg}$, so: $\frac{M_{H S}}{M_{U}}=0.21925$ and this factor would apply to many values in this main treatise and several other documents of mine.

For the IniAll we find (with $\rho_{n, \max }=1.39 \times 10^{18} \mathrm{~kg} / \mathrm{m}^{3}$, see [119] in my main treatise ${ }^{4}$):
Euclidean radius:

$$
\begin{equation*}
R_{\text {IniAll }}=\sqrt[3]{\frac{3}{4 \pi} \cdot \frac{M_{H S}}{\rho_{n, \max }}}=1.65 \mathrm{au} \tag{5}
\end{equation*}
$$

From now on, I presume it is true that $M_{U} \equiv M_{H S}$.
Instead of H_{0} we should in general use H,
so:

$$
\begin{equation*}
M_{U}=\frac{c^{3}}{2 G H} \tag{6}
\end{equation*}
$$

Presuming the mass of the universe is truly constant over time, GH must be constant as well.
Its value is:

$$
\begin{equation*}
G H=\frac{c^{3}}{2 M_{U}}=1.54 \times 10^{-28} \mathrm{~m}^{3} / \mathrm{kg} / \mathrm{s}^{3} \tag{7}
\end{equation*}
$$

We already saw that $H=1 / t$, so G must be proportional to t and then the Schwarzschild radius $\frac{2 G M_{H S}}{c^{2}}$ would grow together with the Hubble distance and G is not a fundamental constant over time. Bye bye, Planck units! By the way, Paul Dirac thought G would decrease with the age of the universe ${ }^{5}$.

$$
m_{P}=\sqrt{\frac{\hbar c}{G}}, \quad l_{P}=\sqrt{\frac{\hbar G}{c^{3}}}=m_{P} \frac{G}{c^{2}}, \quad t_{P}=\sqrt{\frac{\hbar G}{c^{5}}}=\frac{l_{P}}{c}=m_{P} \frac{G}{c^{3}}, \quad T_{P}=\sqrt{\frac{\hbar c^{5}}{G k_{B}^{2}}}=m_{P} \frac{c^{2}}{k_{B}}
$$

Given that $G \propto t_{H}$ they would not even be linearly related to the age of the universe, unless it would be that $h \propto t_{H}$ as well... I do not doubt the constancy of the speed of light, which to me is just the fundamental ratio of that what we perceive as distance and time, not simply the velocity of photons.

And, just in case you might be interested,
the Compton wavelength of $M_{U} \equiv M_{H S}$ is:

$$
\begin{equation*}
\lambda_{C, U}=\frac{h}{c \cdot M_{H S}}=\frac{2 h G H}{c^{4}}=2.52 \times 10^{-95} \mathrm{~m} \tag{8}
\end{equation*}
$$

[^1]
Gravitational constant

Please note that the extension of the universe implies that any $r \propto t$. Kepler's third law: $\omega^{2} r^{3}=G M$ yields: $\omega^{2} r^{2}=v^{2}=\frac{G}{r} M$, so if both $G \propto t$ and $r \propto t$ then v (rotational velocity) would remain constant over time.
$G \propto t$ also means the universe would have started with zero gravity, thus allowing for the big bang to have actually occurred. To me this makes sense. Have you (n)ever pondered/wondered how the big bang could have overcome the initial gravitation which must have been far too large for anything to escape?
In my main treatise ${ }^{6}$ I do calculations on a full disintegration of the IniAll, which would be the entire initial universe in the form of neutronium. Free neutrons do indeed decay, but in an atomic nucleus they usually don't, unless there is a surplus of them, in which case the isotope emits beta radiation. If a blob of neutronium were the core of a black hole however, any decay products would never reach the required escape velocity being the speed of light. And wouldn't the electric force that greatly exceeds gravitation pull the electrons back? The IniAll must certainly have been smaller than its own Schwarzschild radius if the current value of G would apply, so it could not have decayed, but it is a fact that it does not exist nowadays. Would gravity initially have been zero then that could explain the disintegration of the IniAll.

The calculations below assume a 3 -spherical geometry of the universe. As derived in my main treatise, the $3 S$ volume of the universe is: $V_{U}=\frac{2 D_{H}^{3}}{\pi}=\frac{2 c^{3} t_{H}^{3}}{\pi}=\frac{2 c^{3}}{\pi H_{0}^{3}} \quad$ [239] in main treatise
yielding a universal density of: $\quad \rho_{U}=\frac{\left(M_{U}=M_{H S}\right)}{V_{U}}=\frac{c^{3}}{2 G H_{0}} \cdot \frac{\pi H_{0}^{3}}{2 c^{3}}=\frac{\pi H_{0}^{2}}{4 G}$
or:

$$
\begin{equation*}
\rho_{U}=\frac{\pi H_{0}^{3}}{2 c^{3}} \cdot M_{U} \quad=6.23 \times 10^{-26} \mathrm{~kg} / \mathrm{m}^{3} \tag{10}
\end{equation*}
$$

and an atomic density of:

$$
\begin{equation*}
\frac{N_{U}}{V_{U}}=\frac{\rho_{U}}{u} \quad=38 \quad / \mathrm{m}^{3} \tag{12}
\end{equation*}
$$

We also find:

$$
\begin{equation*}
G=\frac{\pi H^{2}}{4 \rho_{U}}=\frac{\pi}{4 \rho_{U} t_{H}^{2}} \tag{13}
\end{equation*}
$$

and:

$$
\begin{equation*}
G=\frac{\pi H^{2}}{4 \cdot \frac{\pi H^{3}}{c^{3}} \cdot M_{U}}=\frac{c^{3}}{2 \cdot H \cdot M_{U}}=\frac{c^{3} t_{H}}{2 M_{U}} \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\text { Might it be fundamental that } G=\frac{\pi}{4 \rho_{U} t_{H}^{2}}=\frac{c^{3} t_{H}}{2 M_{U}} \text { ? } \tag{15}
\end{equation*}
$$

Planck constant

Let's plug [15] into the Planck mass:

$$
\begin{equation*}
m_{P}=\sqrt{\frac{\hbar c}{G}}=\sqrt{\hbar c \cdot \frac{2 M_{U}}{c^{3} t_{H}}}=\sqrt{\frac{2 \hbar M_{U}}{c^{2} t_{H}}}=\sqrt{\frac{h M_{U}}{\pi c^{2} t_{H}}} \tag{16}
\end{equation*}
$$

To me this looks strange. How can the Planck mass be proportional to the square root of the mass of the universe? Could it be that $h \propto M_{U} t_{H}$? After all, [16] yields: $\hbar=G \frac{m_{P}^{2}}{c}$.
Let's define:

$$
\begin{equation*}
\xi^{2}:=\frac{\pi c^{2} M_{U} t_{H}}{h} \therefore h=\frac{\pi c^{2} M_{U} t_{H}}{\xi^{2}} \text { yielding: } M_{U}=\xi m_{P} \tag{17}
\end{equation*}
$$

which looks far better.
Of course, using [6]: $\quad \xi=\frac{M_{U}}{m_{P}}=\sqrt{\frac{\pi c^{2} M_{U} t_{H}}{h}}=\sqrt{\frac{\pi c^{5}}{2 h G H^{2}}} \approx 4.03 \times 10^{60}$ (dimensionless)

[^2]It simply is the amount of matter in the entire universe in terms of the Planck mass. But it is proportional to $\sqrt{\frac{t_{H}}{h}}$. If we presume it constant, h would be proportional to the age of the universe. We can then simply redefine the Planck mass as $m_{P}=M_{U} / \xi$. One may doubt how fundamental this unit of mass really is. The other Planck units (especially Planck length and Planck time) would no longer be fundamental constants, since they are proportional to $m_{P} G$, hence to the age of the universe.

IF we would consider m_{P} and M_{U} and thus ξ more fundamental than h it would mean:

$$
\begin{equation*}
\text { [17] } \Rightarrow h=\frac{\pi c^{2} M_{U} t_{H}}{\xi^{2}}=\frac{\pi c^{2} M_{U} t_{H}}{M_{U}^{2} / m_{P}^{2}}=\frac{\pi m_{P}^{2} c^{2}}{M_{U}} t_{H}=\pi \cdot \frac{m_{P}}{M_{U}} \cdot m_{P} c^{2} \cdot t_{H}=\pi \cdot \frac{m_{P}}{M_{U}} \cdot E_{P} \cdot t_{H} \tag{19}
\end{equation*}
$$

Of course we also recognise the Planck momentum $p_{P}=m_{P} c$
so: $\quad h=\frac{\pi m_{P}^{2} c^{2}}{M_{U}} t_{H}=\frac{\pi p_{P}^{2} t_{H}}{M_{U}} \quad$ and: $\quad \hbar=\frac{m_{P}^{2} c^{2}}{2 M_{U}} t_{H}=\frac{p_{P}^{2} t_{H}}{2 M_{U}}$
also: $\quad \hbar=\frac{p_{P} \cdot m_{P} c \cdot t_{H}}{2 M_{U}}=\frac{m_{P}}{M_{U}} \cdot \frac{p_{P} \cdot c t_{H}}{2}=\frac{m_{P}}{M_{U}} \cdot \frac{p_{P} D_{H}}{2}=\frac{m_{P}}{M_{U}} \cdot L_{P H}$
where $L_{P H}=p_{P} \frac{D_{H}}{2}$ is what I will call the "Planck-Hubble angular momentum", which grows with the (unaccelerated ${ }^{7}$) expansion of the universe. It currently equals $L_{P H 0} \approx 4.25 \times 10^{26} \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}$. It would be the angular momentum of a Planck mass that is travelling at the speed of light along the equator of the largest possible ball around any point in our 3-spherical universe. Such a ball would itself be a 2-equator of the glome. For comparison: the angular momentum of the Milky Way Galaxy as if it were a homogeneous disk is in the order of $\frac{2 \pi}{250 \mathrm{Ma}} \cdot\left\{\frac{1}{4} \cdot\left(2 \times 10^{42} \mathrm{~kg}\right) \cdot(50 \mathrm{kly})^{2}\right\} \approx 10^{68} \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}$, which is way more than $L_{P H O}$.
The reduced Planck constant can now be seen as the Planck-Hubble angular momentum averaged over all mass in the universe in terms of the Planck mass.

Rotating universe

Next is a rather naive approach, but it may give some insight. If the universe were a homogeneous rotating sphere with a radius of $R_{U 0}=D_{H 0} / 2$ and an angular momentum of $L_{P H 0}$ its angular velocity would be:

$$
\begin{align*}
\omega_{U} & =\frac{L_{P H 0}}{I_{U}}=\frac{L_{P H 0}}{\frac{{ }_{5}^{2}}{} M_{U} R_{U 0}^{2}}=\frac{L_{P H 0}}{\frac{2}{5} M_{U}\left(\frac{D_{H 0}}{2}\right)^{2}}=\frac{10 L_{P H 0}}{M_{U} D_{H 0}^{2}}=\frac{10 p_{P} \frac{D_{H 0}}{2}}{M_{U} D_{H 0}^{2}}=\frac{5 p_{P}}{M_{U} D_{H 0}}=\frac{5 p_{P}}{M_{U} c t_{H 0}}=\frac{5 m_{P} c}{M_{U} c t_{H 0}}=\frac{5 m_{P} H_{0}}{M_{U}} \tag{22}\\
& \approx 2.86 \times 10^{-78} \mathrm{rad} / \mathrm{s} \text { or } \approx 4.54 \times 10^{-79} \text { revol. } / \mathrm{s} .
\end{align*}
$$

I have no idea in how far this might reflect any reality, but it makes me feel proud to have ealculated reasonably estimated the rotation of the entire universe from "fundamental" "constants" of nature!

With a radius of 1.65 au as given by [5], the IniAll would then have rotated at

$$
\begin{equation*}
\omega_{\text {IniAll }}=\frac{L_{P H, \text { IniAll }}}{I_{\text {IniAll }}}=\frac{m_{P} C \cdot \frac{D_{H, \text { IniAll }}^{2}}{2}}{{ }_{5}^{2} M_{U} R_{\text {IniAll }}^{2}}=\frac{5 m_{P}}{4 M_{U}} \cdot \frac{c^{2} t_{H, \text { IniAll }}}{R_{\text {IniAll }}^{2}} \tag{23}
\end{equation*}
$$

assuming: $\quad t_{H, \text { IniAll }}=\frac{R_{\text {IniAll }}}{D_{H 0}} \cdot \frac{1}{H_{0}}=\frac{R_{\text {IniAll }}}{c} \approx 13: 43$ (mm:ss)
we obtain: $\quad \omega_{\text {IniAll }}=\frac{5 m_{P}}{4 M_{U}} \cdot \frac{c^{2} t_{H \text { IniAll }}}{R_{\text {IniAll }}^{2}}=\frac{5 m_{P}}{4 M_{U}} \cdot \frac{c^{2}}{R_{\text {IniAll }}^{2}} \cdot \frac{R_{\text {IniAll }}}{c}=\frac{5 m_{P}}{4 M_{U}} \cdot \frac{c}{R_{\text {IniAll }}}$

$$
\begin{equation*}
\approx 3.77 \times 10^{-64} \mathrm{rad} / \mathrm{s} \text { or } \approx 6.00 \times 10^{-65} \mathrm{revol} . / \mathrm{s} \tag{24}
\end{equation*}
$$

[^3]which also is very slow, but 132×10^{12} times faster than what's given by [22]. This resembles the "pirouette effect" (which it isn't as the angular momentum $L_{P H}$ is growing linearly ${ }^{7}$ with the expansion of the universe).

When we plug [5] into [24] we obtain:

$$
\begin{equation*}
\omega_{\text {IniAll }}=\frac{5 m_{P}}{4 M_{U}} \cdot \frac{c}{\sqrt[3]{\frac{3}{4 \pi} \cdot \frac{M_{U}}{\rho_{n, \max }}}}=\frac{5 m_{P}}{4 M_{U}} \cdot c \cdot \sqrt[3]{\frac{4 \pi \rho_{n, \max }}{3 M_{U}}}=p_{P} \cdot \sqrt[3]{\frac{125 \pi \rho_{n, \max }}{48 M_{U}^{4}}} \tag{25}
\end{equation*}
$$

which obviously depends only on the mass of the universe, the Planck momentum, and the maximum density of the neutronium of which I presume the IniAlI consisted.

Now consider a stationary amount of gas. As it is stationary, its total momentum vector equals $\overrightarrow{0}$ whilst all molecules are definitely moving, so by absolute value there is a sort of "internal momentum" with no specific orientation. Might $L_{P H}$ be something like that? An internal angular momentum by absolute value? For a rotating homogeneous sphere in general
we have:

$$
\begin{align*}
& \omega=\frac{L}{I}=\frac{L}{\frac{2}{5} m r^{2}} \tag{26}\\
& \frac{5 \hbar}{2 m_{P}}=\omega r^{2}=v r \tag{27}\\
& \frac{5 m_{P} G}{2 c}=v r \tag{28}\\
& \frac{5 l_{P} c}{2}=v r \quad \text { or: } \quad v=\frac{5}{2} \cdot \frac{l_{P}}{r} \cdot c \tag{29}
\end{align*}
$$

so a rotating spherical Planck mass should have a diameter of at least $5 l_{P}$ and then its equator would spin at the speed of light. In the form of neutronium a Planck mass would contain 1.30×10^{19} neutrons and with $\rho_{n, \max }=1.39 \times 10^{18} \mathrm{~kg} / \mathrm{m}^{3}$ (the neutronium density if neutrons would be compressed to their Compton wavelength) it would have a volume of $\sim 15.66 \mathrm{~nm}^{3}$, hence a radius of 1.55 nm .

This would yield a rotation at: $\quad \omega=\frac{5 \hbar}{2 m_{P} r^{2}} \approx 5.03 \times 10^{-9} \mathrm{rad} / \mathrm{s}$ or $8.01 \times 10^{-10} \mathrm{revol} . / \mathrm{s}$
and an equatorial velocity of: $\quad 7.81 \mathrm{am} / \mathrm{s}$ (atto $=10^{-18}$).
Applying [21] to a single neutron would render the neutron's "cosmic angular momentum"
as:

$$
\begin{equation*}
L_{n}=\frac{m_{n}}{M_{U}} \cdot L_{P H} \approx 1.91 \times 10^{-80} \cdot 4.25 \times 10^{26} \approx 8.12 \times 10^{-54} \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s} \tag{32}
\end{equation*}
$$

also: $\quad I_{n}=\frac{2}{5} m_{n} r_{n}^{2}=\frac{2}{5} \cdot 1.675 \times 10^{-27} \mathrm{~kg} \cdot\left(0.8 \times 10^{-15}\right)^{2} \mathrm{~m}^{2} \approx 4.29 \times 10^{-58} \mathrm{~kg} \mathrm{~m}{ }^{2}$
hence: $\quad \omega_{n}=\frac{L_{n}}{I_{n}} \approx 19000 \mathrm{rad} / \mathrm{s}$ or $\sim 3000 \mathrm{revol} . / \mathrm{s}$
yielding an equatorial velocity of: $\omega_{n} r_{n} \approx 15.2 \mathrm{pm} / \mathrm{s}\left(\right.$ pico $\left.=10^{-12}\right)$.
According to quantum mechanics the neutron's spin angular momentum is equal to $1 / 2 \hbar=5.27 \times 10^{-35} \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}$ which is 6.49×10^{18} times the cosmic angular momentum given by [32]. For the $\sim 5.25 \times 10^{79}$ nucleons in the universe this adds up to an internal angular momentum of the entire universe equal to $\sim 2.75 \times 10^{45} \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}$. For a single neutron it yields an angular velocity of $\sim 1.23 \times 10^{15} \mathrm{rad} / \mathrm{s}$ and an equatorial velocity of $\sim 0.984 \mathrm{~m} / \mathrm{s}$. Because of the discrepancy with [34] we should abandon the idea of an internal angular momentum.
But, given the fact that the universe absolutely definitely IS a glome ${ }^{8}$, the gravitational constant cannot be constant at all, it must be proportional to the age of the universe, and it seems very plausible that

[^4]the Planck constant is proportional to this age as well, which would mean all current theories about the evolution of the universe since the very beginning are in Einstein's native language: voll daneben! ${ }^{9}$

Gravitational constant -- continued

[15] is the 3 -spherical version of Mach's principle. To be more specific, it is the 3 -spherical equivalent of Mach8 as given in https://arxiv.org/pdf/gr-qc/9607009.pdf:

- Mach8: $\Omega=4 \pi \rho G T^{2}$ is a definite number of order unity (p475). (Here, ρ is the mean density matter in the universe and T is the Hubble time. Makes sense in EC only.) Ω does seem to be of order unity in our present universe, but note that of all EC models, only the Einstein-DeSitter makes this number a constant, if Ω is not exactly one. Making a theory in which this approximate equality appears natural is a worthwhile and ongoing effort (eg inflationary cosmologies).

The formula given there yields: $G=\Omega / 4 \pi \rho_{U} t_{H}^{2}$ (cf. [15]: $G=\pi / 4 \rho_{U} t_{H}^{2}$ which is for 3S geometry) (And please forget about inflationary cosmologies, see http://henk-reints.nl/astro/Thou-shalt-not-excogitate.pdf.) I dare to presume both [4] and [15] are true,
therefore:

$$
\begin{equation*}
G=\frac{c^{3} t_{H}}{2 M_{U}} \tag{36}
\end{equation*}
$$

or:

$$
\begin{equation*}
\boldsymbol{G} \boldsymbol{H}=\frac{c^{3}}{2 M_{U}} \quad \approx 1.536 \times 10^{-28} \quad(\mathrm{~m} / \mathrm{s})^{3} / \mathrm{kg} \tag{37}
\end{equation*}
$$

Also:

$$
\begin{equation*}
D_{H}=\frac{c}{H} \quad \therefore H=\frac{c}{D_{H}} \quad \therefore G H=G \frac{c}{D_{H}}=\frac{c^{3}}{2 M_{U}} \quad \therefore \boldsymbol{G}=\frac{\mathbf{1}}{\mathbf{2}} \boldsymbol{D}_{\boldsymbol{H}} \cdot \frac{c^{2}}{M_{U}} \tag{38}
\end{equation*}
$$

To me, it seems G has to do with the equivalent of surface tension, which has a dimension of force per length or energy per surface area. Scaling up by one dimension would then yield energy per 3-volume which can thus be seen as the hyper surface tension of the glome. As derived further below (to obtain [51]) the dimension of G is:

$$
\begin{equation*}
[G]=[\text { energy density }] \cdot\left[\frac{\text { surface area }}{\text { mass }}\right]^{2}=[\text { hyper surface tension }] \cdot\left[\frac{\text { surface area }}{\text { mass }}\right]^{2} \tag{39}
\end{equation*}
$$

This surface area would be the glome's 2-dimensional equator, see further below.
Now let us see what comes out if we consider G as something divided by the volume of the universe.
We start with the trivial:

$$
\begin{equation*}
G=\frac{G V_{U}}{V_{U}} \tag{40}
\end{equation*}
$$

combining [9] and [36] yields:

$$
\begin{equation*}
G V_{U}=\frac{c^{3} t_{H}}{2 M_{U}} \cdot \frac{2 c^{3}}{\pi H_{0}^{3}}=\frac{c^{6} t_{H}^{4}}{\pi M_{U}}=\frac{c^{6}}{\pi M_{U} H^{4}} \tag{41}
\end{equation*}
$$

hence:

$$
\begin{equation*}
G=\frac{c^{6} t_{H}^{4}}{\pi M_{U}} / V_{U} \tag{42}
\end{equation*}
$$

Calculation yields:

$$
\begin{equation*}
\frac{c^{6} t_{H}^{4}}{\pi M_{U}}=9.4 \times 10^{67} \mathrm{~m}^{6} / \mathrm{s}^{2} / \mathrm{kg} \text { or } \mathrm{m}^{4} \cdot(\mathrm{~m} / \mathrm{s})^{2} / \mathrm{kg} \tag{43}
\end{equation*}
$$

This has the dimension of a hyper volume times a velocity ${ }^{2}$ per mass, so let's divide it by the hyper volume of the glome and see what comes out.

[^5]The glome's hyper radius must be:
and its hyper volume is given by:
Then:
hence:
or:
We find (using [9]):
and then:

$$
R=\frac{D_{H}}{\pi}=\frac{c t_{H}}{\pi}
$$

$$
V_{4}=\frac{1}{2} \pi^{2} R^{4}=\frac{1}{2} \pi^{2} \cdot \frac{c^{4} t_{H}^{4}}{\pi^{4}}=\frac{c^{4} t_{H}^{4}}{2 \pi^{2}}
$$

$$
\frac{G V_{U}}{V_{4}}=\frac{c^{6} t_{H}^{4} / \pi M_{U}}{c^{4} t_{H}^{4} / 2 \pi^{2}}=\frac{2 \pi c^{2}}{M_{U}}
$$

$$
G V_{U}=\frac{2 \pi c^{2}}{M_{U}} \cdot V_{4}
$$

$$
G=\frac{2 \pi c^{2}}{M_{U}} \cdot \frac{V_{4}}{V_{U}}
$$

$$
\frac{V_{4}}{V_{U}}=\frac{c^{4} t_{H}^{4} / 2 \pi^{2}}{2 c^{3} t_{H}^{3} / \pi}=\frac{c t_{H}}{4 \pi}
$$

$$
\begin{equation*}
G=\frac{2 \pi c^{2}}{M_{U}} \cdot \frac{V_{4}}{V_{U}}=\frac{2 \pi c^{2}}{M_{U}} \cdot \frac{c t_{H}}{4 \pi} \tag{44}
\end{equation*}
$$

Since it would diminish insight I do not cancel out the 2π and 4π, which of course would bring us back to [36]. In [44], V_{4} is the hyper volume of the glome and V_{U} is the $3 d$-volume of the universe in 3-spherical geometry, which is the hyper surface of the glome.

Now consider Earth as if it were a perfect sphere. A (mathematical) pole cap's perimeter is a circle of latitude on earth. As observed from the pole along Earth's surface it simply is a circle around it with a circumference less then what would be expected if its radius is measured along Earth's curved surface. These circles of latitude become greater as they approach the equator, but beyond it they decline all the way to nought in the antipodal point (the opposite pole). The equater itself is the greatest possible circle of latitude. Now Earth's circumference equals the equator's circumference.
For a glome (3 -sphere) it is similar. A ball around a point on the glome is a 3 -sphere cap. Its surface is the equivalent of a circle of latitude on Earth. A ball of latitude so to say, and the greatest possible ball of latitude is the glome's equator. This equator is not a circle but a two-dimensional surface, yielding the glome's two-dimensional circumference, which evidently is this equator's surface area.

Recapitulation of the equations found for G :

$$
\begin{aligned}
& G=\frac{c^{3} t_{H}}{2 M_{U}} \quad \therefore G H=\frac{c^{3}}{2 M_{U}} \\
& G=\frac{1}{2} D_{H} \cdot \frac{c^{2}}{M_{U}} \\
& G=\frac{2 \pi c^{2}}{M_{U}} \cdot \frac{V_{4}}{V_{U}}=\frac{2 \pi c^{2}}{M_{U}} \cdot \frac{c t_{H}}{4 \pi}
\end{aligned}
$$

$$
G=\frac{1}{2} D_{H} \cdot \frac{c^{2}}{M_{U}} \quad\left(\frac{1}{2} D_{H}\right. \text { is the apparent radius of the universe's }
$$ (related to some sort of hyper surface tension)

This should be interpreted as follows.
IF the universe is a glome (which it MUST be based on the SDF and SDSS:DR14Q catalogs)
AND IF it is closed at its Schwarzschild radius
THEN the Hubble distance equals the Schwarzschild radius equals the antipodal distance AND the gravitational constant is proportional to the age of the universe
HENCE the universe started with zero gravitation
THUS allowing for the big bang to have occurred at all.
To me this makes sense. It is elegant. It is consistent. It does not contradict anything to my knowledge that has been derived from observed phenomena without fantasising.

Should the entire universe be considered a black hole? I doubt, since the centre of mass of the 3 -spherical universe does not reside within this same universe, but at the centre of the hypersphere of
which the glome just is the 3-surface, cf. the barycentre of Earth's surface not being on this surface but at the centre of the earth.

Now - given that the universe is a glome - we'll consider our own location a pole. Then any ball around us actually is a ball of latitude,
which has a surface area of:

$$
\begin{aligned}
& A_{3 S}=D_{H}^{2} \cdot \frac{4}{\pi} \sin ^{2} \pi \rho \\
& C_{U} \equiv A_{3 S}=D_{H}^{2} \cdot \frac{4}{\pi}
\end{aligned}
$$

$$
\text { [238] in main treatise }{ }^{10}
$$

its maximum is:
which would be the universe's two-dimensional circumference. Please remember this is a $2 d$-surface area. It is the area of a 2 -sphere (a "normal" ball) that would fit around the entire 3 -sphere (a glome). Let's call it the outer surface area of the entire universe itself.

We substitute:

$$
\begin{align*}
D_{H} & =c t_{H} \\
C_{U} & =\frac{4}{\pi} c^{2} t_{H}^{2} \tag{45}
\end{align*}
$$

yielding:
This equals:

$$
C_{U}=\frac{4}{\pi} c^{3} t_{H} \cdot \frac{t_{H}}{c}
$$

In [36] we found:
$G=\frac{c^{3} t_{H}}{2 M_{U}} \quad \therefore c^{3} t_{H}=2 G M_{U}$
so:
$C_{U}=\frac{8}{\pi} G M_{U} \cdot \frac{t_{H}}{c}$
hence:
$G=\frac{\pi c}{8 t_{H}} \cdot \frac{C_{U}}{M_{U}}=\frac{\pi c H}{8} \cdot \frac{C_{U}}{M_{U}}$
Please note:
this is not constant over time and neither is C_{U}.
Calculation yields:

$$
\begin{equation*}
\frac{\pi c}{8 t_{H 0}}=\frac{\pi c H_{0}}{8} \approx 2.71 \times 10^{-10} \mathrm{~m} / \mathrm{s}^{2} \text { or } \mathrm{N} / \mathrm{kg} \tag{47}
\end{equation*}
$$

It should be obvious that $\frac{C_{U}}{M_{U}}$ equals the surface area surrounding the universe divided by its mass, i.e. the outer surface area per mass. Then G can be seen as a force per mass times a surface area per mass.
This force per mass is: $\quad \frac{\pi c}{8 t_{H}}=\frac{\pi c H}{8}$
and the surface area per mass is: $\quad \frac{c_{U}}{M_{U}}=\frac{4 c^{2} t_{H}^{2}}{\pi M_{U}}$
The dimension of G can be found as follows.
Newton:

$$
\begin{align*}
& F=m \cdot a=G \cdot \frac{m M}{r^{2}} \\
& g \equiv a=\frac{F}{m}=G \cdot \frac{M}{r^{2}} \\
& G=g \cdot \frac{r^{2}}{M} \\
& {[g] \equiv[a]=\left[\frac{\text { force }}{\text { mass }}\right]} \tag{50}
\end{align*}
$$

hence the "graveleration":
and the gravitational constant:
Dimension of $g \equiv a$:
hence:
$[G]=\left[\frac{\text { force }}{\text { mass }}\right] \cdot\left[\frac{\text { surface area }}{\text { mass }}\right]$

It also equals:

$$
\begin{aligned}
{[G] } & =\left[\frac{\text { force } \cdot \text { length }}{\text { mass } \cdot \text { length }}\right] \cdot\left[\frac{\text { surface area }}{\text { mass }}\right] \\
& =\left[\frac{\text { force } \cdot \text { length }}{\text { surface area } \cdot \text { length }}\right] \cdot\left[\frac{\text { surface area }}{\text { mass }}\right]^{2} \\
& =\left[\frac{\text { energy }}{\text { volume }}\right] \cdot\left[\frac{\text { surface area }}{\text { mass }}\right]^{2}
\end{aligned}
$$

[^6]\[

$$
\begin{equation*}
=[\text { energy density }] \cdot\left[\frac{\text { surface area }}{\text { mass }}\right]^{2} \tag{51}
\end{equation*}
$$

\]

This energy density (which effectively is a pressure) can be found as follows:

$$
\begin{equation*}
[46] \Rightarrow \quad G=\frac{\pi c H}{8} \cdot \frac{C_{U}}{M_{U}}=\frac{\pi c H M_{U}}{8 C_{U}} \cdot\left(\frac{C_{U}}{M_{U}}\right)^{2} \tag{52}
\end{equation*}
$$

hence, using [45]:

$$
\begin{array}{cl}
P:=\frac{\pi c H M_{U}}{8 C_{U}}=\frac{\pi c H M_{U}}{8 \cdot \frac{4}{\pi} c^{2} t_{H}^{2}} \quad=\frac{\pi^{2} M_{U}}{32 c t_{H}^{3}}=\frac{\pi^{2} c^{2}}{32} \cdot \frac{M_{U}}{D_{H}^{3}}=\frac{\pi^{2} M_{U} H^{3}}{32 c} \approx 1.1 \times 10^{-9} \mathrm{~J} / \mathrm{m}^{3} \\
G=P \cdot\left(\frac{c_{U}}{M_{U}}\right)^{2} \tag{53}
\end{array}
$$

yielding:
where P is some energy density or hyper surface tension of the 3 -spherical universe which decreases by t_{H}^{3} as the universe is expanding (cf. blowing up a balloon which is hard in the beginning but becomes easier and easier as the balloon is inflating - difference is that the balloon will end with a big bang whilst the universe started with one $(-)), C_{U}$ is the circumference of the universe, i.e. the surface area of its 2-dimensional equator (which increases by t_{H}^{2}), and M_{U} its mass which I presume constant over time.

The net effect is $G \propto t_{H}$ and we also found: $h \propto t_{H}$.
Two presumed universal constants appear to be proportional to the age of the universe.

Addendum 2022-03-30/31:

Eq.[9] (3S volume of universe): $\quad V_{U}=\frac{2 D_{H}^{3}}{\pi}$
cosmic expansion:

$$
D_{H}=c t_{H} \therefore V_{U}=\frac{2 c^{3} t_{H}^{3}}{\pi}
$$

volumetric growth:

$$
\frac{d V_{U}}{d t_{H}}=\frac{6 c^{3} t_{H}^{2}}{\pi}
$$

volumetric acceleration:

$$
\frac{d^{2} V_{U}}{d t_{H}^{2}}=\frac{12 c^{3} t_{H}}{\pi}=\frac{24}{\pi} \cdot \frac{c^{3} t_{H}}{2}=\text { growing liniarly }
$$

eq.[15] (gravitational constant): $\quad G=\frac{c^{3} t_{H}}{2 M_{U}}$

yielding:

$$
G M_{U}=\frac{\pi}{24} \cdot \frac{d^{2} V_{U}}{d t_{H}^{2}}=\frac{\pi}{24} \ddot{V}_{U}
$$

dimension of $G M_{U}$:
L^{3} / T^{2}
$G M_{U}$ is purely geometric/kinematic (which I do not consider a new insight) and it reflects the volumetric acceleration of the cosmic expansion.

https://apod.nasa.gov/apod/image/0306/carina hst.jpg
The universe's reaction to Homo dapiens' excogitations...

[^0]: ${ }^{1}$ http://henk-reints.nl/astro/HR-Geometry-of-the-Universe-v2b-20200625T0907Z.pdf

[^1]: ${ }^{2}$ Valev, Dimitar (October 2008). "Consequences from conservation of the total density of the universe during the expansion". arXiv:1008.0933 [physics.gen-ph].
 ${ }^{3}$ Deza, Michel Marie; Deza, Elena (Oct 28, 2012). Encyclopedia of Distances (2nd ed.). Heidelberg: Springer Science \& Business Media. p. 452. doi:10.1007/978-3-642-30958-8. ISBN 978-3-642-30958-8.
 ${ }^{4}$ http://henk-reints.nl/astro/HR-on-the-universe.php
 ${ }^{5}$ https://www.youtube.com/watch?v=-o8mUyq Wwg (Dirac himself) \& https://www.youtube.com/watch?v=Et8-gg6XNDY

[^2]: ${ }^{6}$ http://henk-reints.nl/astro/HR-on-the-universe.php

[^3]: ${ }^{7}$ http://henk-reints.nl/astro/HR-Geometry-of-the-Universe-v2b-20200625T0907Z.pdf (via http://henk-reints.nl/UQ)

[^4]: ${ }^{8}$ http://henk-reints.nl/astro/HR-Geometry-of-the-Universe-v2b-20200625T0907Z.pdf

[^5]: ${ }^{9}$ https://translate.google.nl/?s|=de\&tl=en\&text=voll\%20daneben\&op=translate

[^6]: ${ }^{10}$ http://henk-reints.nl/astro/HR-on-the-universe.php

