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Lorentz factor: 𝛾 =
1

√1−
𝑣2

𝑐2

 [4] 

Relativistic mass: 𝑚 = 𝛾𝑚0 [5] 

Kinetic energy: 𝐸𝑘 = 𝑚𝑐2 − 𝑚0𝑐2 = 𝛾𝑚0𝑐2 − 𝑚0𝑐2 = (𝛾 − 1)𝑚0𝑐2 [6] 
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An object with rest mass 𝑚0 and kinetic energy 𝐸𝑒𝑠𝑐 can/will escape if it is at a distance of at least 𝑟𝑒𝑠𝑐. 

For a neutron star, we've got: 𝜌 = 𝜌𝑁 = 1.392134 × 1018 kg/m3 [15] 

and of course: 𝑐 = 299792458 m/s [16] 

as well as: 𝐺 = 6.67408 × 10−11 m3/kg/s3 [17] 

so: 𝑐 ∙ √
3

8𝜋𝐺𝜌
= 299792458 ∙ √

3

8𝜋∙6.67408×10−11∙1.392134×1018 = 10745 m [18] 

This value equals the critical black hole radius as calculated in http://henk-reints.nl/astro/HR-on-the-universe.php. 

Suppose this object is an electron originating from a decaying neutron of a neutron star without obtaining energy 

from the star's binding energy. Then: 

Electron mass: 𝑚0 = 𝑚𝑒 = 9.10938356 × 10−31 kg [19] 

so: 𝑚0𝑐2 = 𝑚𝑒𝑐2 = 8.18710565 × 10−14 J [20] 

Neutron decay energy: 𝐸𝑑𝑒𝑐 = (𝑚𝑛 − 𝑚𝑝 − 𝑚𝑒)𝑐2 = 0.78257 MeV = 1.2538 × 10−13 J [21] 

First assume the electron obtains all this energy. Then: 

 𝑟0 = 10745 ∙ √1 − (
8.18710565×10−14
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= 9871 m [22] 

Its corresponding mass equals: 𝑀0 =
4

3
𝜋𝜌𝑟0

3 = 7.234 × 1030 kg ≈ 3.637𝑀⊙ [23] 

So a neutron star with a diameter that exceeds 19.74 km and thus a mass above 3.637 times that of our sun 

cannot lose any electrons by neutron decay because gravitation definitely wins that game. Above this size a ball 

of neutronium would not be able to disintegrate. That's why I do still not really understand what the big bang 

actually was. The IniAll must have had a radius of nearly 3 astronomical units. 

http://henk-reints.nl/astro/HR-on-the-universe.php
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In practice, the electron antineutrino takes away roughly 50% of the neutron decay energy on average, 

yielding: 𝑟1 = 10745 ∙ √1 − (
8.18710565×10−14

8.18710565×10−14+
1.2538×10−13

2

)

2

= 8856 m [24] 

corresponding to a diameter of: 𝑑1 = 17.71 km [25] 

and its corresponding mass is: 𝑀1 =
4

3
𝜋𝜌𝑟1

3 = 4.050 × 1030 kg ≈ 2.036𝑀⊙ [26] 

To me it is remarkable that this mass is within the tolerance of the lower bound of the TOV-limit as stated on 

https://en.wikipedia.org/wiki/Tolman%E2%80%93Oppenheimer%E2%80%93Volkoff_limit#History (as of 2019-08-27): 

The mass of the pulsar PSR J0348+0432, at 2.01±0.04 solar masses, puts an empirical lower bound on the TOV limit. 

Below this mass, a neutron star would be prone to evaporation by neutron decay. This could mean twice the solar 

mass is a lower mass limit for neutron stars to be able to stay alive at all. But the neutrons in a neutron star are 

definitely not free neutrons, so they may have a far longer decay time, which would also avoid this evaporation. 

 

https://en.wikipedia.org/wiki/Tolman%E2%80%93Oppenheimer%E2%80%93Volkoff_limit#History

