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In https://www.lehman.edu/faculty/anchordoqui/chapter25.pdf we find: 
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note: 𝐿 = 𝜇𝑣𝑟 ∴
𝐿2

2𝜇𝑟2
=
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2
𝜇𝑣2, 𝐸 = 𝐸kin + 𝐸pot 

𝐸 < 0 → elliptical orbit,    𝐸 = 0 → parabolic orbit,    𝐸 > 0 → hyperbolic orbit 

 

excentricity: 𝑒 = √1 +
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orbit equation: 𝑟 =
𝑟0

1−𝑒 cos 𝜃
 

Sem. rect. of ellipse: 𝑟0 = 𝑎(1 − 𝑒2) ∴ 𝑎 =
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With: ℒ ≔
𝐿

𝜇
 (dimension:  surface area per time) 

and: ℰ ≔
𝐸

𝜇
 (dimension:  squared velocity) 

as well as: ℳ ≔ 𝐺𝑀 (dimension:  volume per squared time) 

we obtain: 𝑒 = √1 +
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We also have: 𝑏 = 𝑎√(1 − 𝑒2) = (
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We define: 𝓋 ≔ √−2ℰ ∴ 2ℰ = −𝓋2 𝒂 =
𝓜

𝓿𝟐 , 𝒃 =
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(not the orbital velocity, but sort of; 𝓋 decreases as 𝑟 increases) 

yielding "roundness": 
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and surface area: 𝐴 = 𝜋𝑎𝑏 = 𝜋 ∙
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