In https://www.lehman.edu/faculty/anchordoqui/chapter25.pdf we find:
reduced mass:

$$
\frac{1}{\mu}=\frac{1}{m_{1}}+\frac{1}{m_{2}} \therefore \mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \quad \therefore m_{1} m_{2}=\mu\left(m_{1}+m_{2}\right)=: M \mu
$$

semilatus rectum:

$$
r_{0}=\frac{L^{2}}{\mu G m_{1} m_{2}}
$$

$$
=\frac{L^{2}}{G M \mu^{2}}
$$

energy:

$$
E=\frac{L^{2}}{2 \mu r^{2}}-\frac{G m_{1} m_{2}}{r}
$$

$$
=\frac{L^{2}}{2 \mu r^{2}}-\frac{G M \mu}{r}
$$

note:

$$
L=\mu v r \quad \therefore \frac{L^{2}}{2 \mu r^{2}}=\frac{1}{2} \mu v^{2}, E=E_{\mathrm{kin}}+E_{\mathrm{pot}}
$$

$E<0 \rightarrow$ elliptical orbit, $\quad E=0 \rightarrow$ parabolic orbit, $\quad E>0 \rightarrow$ hyperbolic orbit
excentricity:

$$
\begin{gathered}
e=\sqrt{1+\frac{2 E L^{2}}{\mu\left(G m_{1} m_{2}\right)^{2}}} \quad=\sqrt{1+\frac{2 E L^{2}}{\mu(G M)^{2} \mu^{2}}} \\
r=\frac{r_{0}}{1-e \cos \theta}
\end{gathered}
$$

orbit equation:
Sem. rect. of ellipse:

$$
r_{0}=a\left(1-e^{2}\right) \quad \therefore a=\frac{L^{2}}{G M \mu^{2}\left(1-e^{2}\right)}
$$

With:

$$
\mathcal{L}:=\frac{L}{\mu}
$$

(dimension: surface area per time)
and:

$$
\mathcal{E}:=\frac{E}{\mu} \quad \text { (dimension: squared velocity) }
$$

as well as: $\quad \mathcal{M}:=G M \quad$ (dimension: volume per squared time)
we obtain: $\quad e=\sqrt{1+\frac{2 \varepsilon \mathcal{L}^{2}}{\mathcal{M}^{2}}} \quad \therefore 1-e^{2}=\frac{-2 \varepsilon \mathcal{L}^{2}}{\mathcal{M}^{2}}$
and:

$$
r=\frac{\mathcal{L}^{2}}{\mathcal{M}(1-e \cos \theta)}
$$

as well as:

$$
a=\frac{\mathcal{L}^{2}}{\mathcal{M}\left(1-e^{2}\right)}=\frac{\mathcal{L}^{2}}{\mathcal{M}} \cdot \frac{\mathcal{N}^{2}}{-2 \varepsilon \mathcal{L}^{2}} \therefore \quad \boldsymbol{a}=\frac{-\mathcal{M}}{2 \mathcal{E}}
$$

We also have:

$$
b=a \sqrt{\left(1-e^{2}\right)}=\left(\frac{-\mathcal{N}}{2 \varepsilon} \sqrt{\frac{-2 \varepsilon \mathcal{L}^{2}}{\mathcal{M}^{2}}}\right)=\frac{\mathcal{L}}{-2 \varepsilon} \sqrt{-2 \mathcal{E}} \quad \boldsymbol{b}=\frac{\sqrt{2}}{2} \cdot \frac{\mathcal{L}}{\sqrt{\varepsilon}}
$$

We define:

$$
v:=\sqrt{-2 \varepsilon} \quad \therefore 2 \varepsilon=-v^{2} \quad \boldsymbol{a}=\frac{\mathcal{M}}{v^{2}}, \boldsymbol{b}=\frac{\mathcal{L}}{v}
$$

(not the orbital velocity, but sort of; v decreases as r increases)
$\begin{array}{lll}\text { yielding "roundness": } & \frac{b}{a}=\sqrt{\left(1-e^{2}\right)}=\sqrt{\frac{-2 \varepsilon \mathcal{L}^{2}}{\mathcal{N}^{2}}} & \frac{\boldsymbol{b}}{\boldsymbol{a}}=\frac{\boldsymbol{L} \boldsymbol{v}}{\mathcal{M}} \\ \text { and surface area: } & A=\pi a b=\pi \cdot \frac{\mathcal{M}}{v^{2}} \cdot \frac{\mathcal{L}}{v} & \boldsymbol{A}=\frac{\boldsymbol{\pi} \mathcal{M} \boldsymbol{L}}{\boldsymbol{v}^{3}}\end{array}$

https://www2.humboldt.edu/scimus/MedInst rap/Orrery/Orrerya_12.jpg

