|--|

reduced mass:	$\frac{1}{\mu} = \frac{1}{m_1} + \frac{1}{m_2} \div \mu =$	$\frac{m_1m_2}{m_1+m_2} \therefore m_1m_2 = \mu(m_1)$	$(+m_2) \Rightarrow M\mu$	
semilatus rectum:	$r_0 = \frac{L^2}{\mu G m_1 m_2}$	$=\frac{L^2}{GM\mu^2}$		
energy:	$E = \frac{L^2}{2\mu r^2} - \frac{Gm_1m_2}{r}$	$=\frac{L^2}{2\mu r^2}-\frac{GM\mu}{r}$		
note:	$L = \mu v r$	$\therefore \frac{L^2}{2\mu r^2} = \frac{1}{2}\mu v^2$, $E = E_{\rm kin}$	$+ E_{\rm pot}$	
$E < 0 \rightarrow$ elliptical orbit, $E = 0 \rightarrow$ parabolic orbit, $E > 0 \rightarrow$ hyperbolic orbit				
excentricity:	$e = \sqrt{1 + \frac{2EL^2}{\mu(Gm_1m_2)}}$	$=\sqrt{1+\frac{2EL^2}{\mu(GM)^2\mu^2}}$	-	
orbit equation:	$r = \frac{r_0}{1 - e \cos \theta}$			
Sem. rect. of ellipse:	$r_0 = a(1-e^2)$	$\therefore a = \frac{L^2}{GM\mu^2(1-e^2)}$	<u>_</u>)	
With:	$\mathcal{L} \coloneqq \frac{L}{\mu}$	(dimension: surface area per ti	me)	
and:	$\mathcal{E} \coloneqq \frac{E}{\mu}$	(dimension: squared velocity)		
as well as:	$\mathcal{M}\coloneqq GM$	(dimension: volume per square	ed time)	
we obtain:	$e = \sqrt{1 + \frac{2\mathcal{E}\mathcal{L}^2}{\mathcal{M}^2}}$	$\therefore 1 - e^2 = \frac{-2\mathcal{EL}}{\mathcal{M}^2}$	2	
and:	$r = \frac{\mathcal{L}^2}{\mathcal{M}(1 - e\cos\theta)}$			
as well as:	$a = \frac{\mathcal{L}^2}{\mathcal{M}(1-e^2)} = \frac{\mathcal{L}^2}{\mathcal{M}} \cdot$	$\frac{\mathcal{M}^2}{-2\mathcal{E}\mathcal{L}^2} \therefore$	$a=rac{-\mathcal{M}}{2\mathcal{E}}$	
We also have:	$b = a\sqrt{(1-e^2)} =$	$\left(\frac{-\mathcal{M}}{2\mathcal{E}}\sqrt{\frac{-2\mathcal{E}\mathcal{L}^2}{\mathcal{M}^2}}\right) = \frac{\mathcal{L}}{-2\mathcal{E}}\sqrt{-2\mathcal{E}}$	$b = rac{\sqrt{2}}{2} \cdot rac{\mathcal{L}}{\sqrt{\mathcal{E}}}$	
We define:	$v \coloneqq \sqrt{-2\mathcal{E}} \therefore 2\mathcal{E}$	$\mathcal{E} = -\psi^2$	$a=rac{\mathcal{M}}{v^2}, \ b=rac{\mathcal{L}}{v}$	
(not the orbital velocity, but sort of; v decreases as r increases)				
yielding "roundness":	$\frac{b}{a} = \sqrt{(1-e^2)} = \sqrt{1-e^2}$	$\frac{-2\mathcal{E}\mathcal{L}^2}{\mathcal{M}^2}$	$\frac{b}{a} = \frac{\mathcal{L}v}{\mathcal{M}}$	
and surface area:	$\mathbf{A} = \pi a b = \pi \cdot \frac{\mathcal{M}}{v^2} \cdot$	<u>L</u> v	$A=\frac{\pi \mathcal{ML}}{v^3}$	

https://www2.humboldt.edu/scimus/MedInst rap/Orrery/Orrerya 12.jpg