p/ _	p.	1/	1
------	----	----	---

Potential energy:	$E_{\rm p} = \frac{-GMm}{r}$	
Circular orbit:	$\frac{v_{\rm orb}^2}{r} = g = \frac{GM}{r^2}$	
Orbital velocity:	$v_{\rm orb} = \sqrt{\frac{GM}{r}}$	
Orbital kinetic energy:	$E_{\rm k,orb} = \frac{mv_{\rm orb}^2}{2} = \frac{GMm}{2r}$	
Total energy (Hamiltonian):	$H = E_{\rm k,orb} + E_{\rm p} = \frac{-GMm}{2r}$	
Angular momentum:	$L = mv_{\rm orb}r = m\sqrt{GMr}$	
Dimension (Mass, Distance, Tin	ne): $[E] = [M][D^2][T^{-2}]$	
and:	$[L] = [M][D^2][T^{-1}] = [E][T] \therefore [L][E^{-1}] = [T]$	
Circular orbit:	$\frac{L}{H} = \frac{m\sqrt{GMr}}{-GMm/2r} = \frac{-2r\sqrt{GMr}}{GM} = \frac{-2r\sqrt{r}}{\sqrt{GM}} = \frac{-2\pi r}{\pi r} = \frac{-\Delta t_{\rm orb}}{\pi}$	
i.e.:	$\Delta t_{\rm orb} = -\pi L/H$	
PRESUMPTION: this also applies to non-circular orbits (I allow YOU to prove it ¹).		
We have:	$L = mvr\sin(\theta)$	
where:	$\theta =$ angle of approach, such that zero = bull's eye	
then:	$\Delta t_{\rm orb} = -\pi v r \sin(\theta) \cdot m/H$	
i.e.:	$\Delta t_{\rm orb} = -\pi v r \sin(\theta) / \dot{H}$	
where:	$\widetilde{H} = H/m$ (specific Hamiltonian)	
Hamiltonian in general:	$\widetilde{H} = \widetilde{E}_{k} + \widetilde{E}_{p} = \frac{v^{2}}{2} - \frac{GM}{r} = \frac{rv^{2} - 2GM}{2r}$	
Suppose we measured:	$P_1 = (t_1, r_1, \varphi_1)$ $\therefore x_1 = r_1 \cos \varphi_1, y_1 = r_1 \sin \varphi_1$	
	$P_2 = (t_2, r_2, \varphi_2)$ $\therefore x_2 = r_2 \cos \varphi_2, y_2 = r_2 \sin \varphi_2$	
	where both $P_1 \& P_2$ are in Q_1	
estimate:	$v^{2} = \frac{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}{(t_{2} - t_{1})^{2}}$	
and:	$r = \frac{r_1 + r_2}{2}$	
as well as:	$\theta = \frac{\varphi_1 + \varphi_2}{2} + \operatorname{atan2}(y_2 - y_1, x_1 - x_2)$	
	yes, indexes are correct: $2^{nd} y$ minus $1^{st} \& 1^{st} x$ minus 2^{nd}	
Then we know:	$\widetilde{H} = \frac{rv^2 - 2GM}{2r}$	
as well as:	$\tilde{L} = vr\sin(\theta)$	
and, last but not least:	$\Delta t_{\rm orb} = \frac{-\pi v r \sin(\theta)}{\tilde{H}} = \frac{2\pi v r^2 \sin(\theta)}{2GM - rv^2} = \frac{2\pi r \tilde{L}}{2GM - rv^2}$	
Merely two positions & their	intermediate time span would suffice to <i>estimate</i> entire orbit!	
This $\Delta t_{ m orb}$ has an asymptote	(restricting closed orbits; for hyperbolic paths, it yields a (negative) time for which I have not (yet) investigated to which points of the trajectory it relates)	
at:	$rv^2 = 2GM$	
it obviously requires:	$rv^2 < 2GM$ (presuming $\sin(\theta) > 0$)	
i.e.:	$r\frac{v^2}{c^2} < \frac{2GM}{c^2} \therefore r\beta^2 < r_{\rm S} \therefore \frac{r}{r_{\rm S}}\beta^2 = \rho\beta^2 < 1$	
or:	$\beta^2 < 1/\rho = \text{dimensionless proximity.}$	
Outside Schwarzschild radius (i.e. $\rho > 1$), Newtonian		
mechanics enforces speed limit of light on closed orbits.		

¹ See: <u>http://henk-reints.nl/astro/HR-orbital-period.pdf</u>