Full sphere:

Subaru Deep Field:

field of view:
space angle:
firmament/SDF ratio:
extrapolation to entire firmament:

Hubble Ultra Deep Field:
field of view:
space angle:
firmament/HUDF ratio:
extrapolation to entire firmament:

$$
\frac{4 \pi}{(\pi / 180)^{2}}=\frac{4 \cdot 180^{2}}{\pi} \approx 41252.96
$$

1400107
$30^{\prime} \times 37^{\prime}$
$\frac{30}{60} \cdot \frac{37}{60}=\frac{1110}{3600}$
$\frac{4 \cdot 180^{2} / \pi}{1110 / 3600} \approx 133793$
1400107×133793
$=187324515851$
$\approx 187 \times 10^{9}$

10040
$2^{\prime} .4 \times 2^{\prime} .4$
$\frac{2.4}{60} \cdot \frac{2.4}{60}=\frac{5.76}{3600}$
$\frac{4 \cdot 180^{2} / \pi}{5.76 / 3600} \approx 25783101$
10040×25783101
$=258862334040$
$\approx 259 \times 10^{9} \quad$ objects/universe

$$
\begin{aligned}
& \left(\frac{187+259}{2}=223\right) \times 10^{9} \\
& \hat{=} \frac{223 \times 10^{9}}{N_{A}}=\frac{223 \times 10^{9}}{6.02214076 \times 10^{23}} \\
& \approx \mathbf{0 . 3 7}
\end{aligned}
$$

100×10^{9}
2.23×10^{22} ≈ 37
squared degrees
objects
squared degrees
objects/universe
objects
squared degrees
galaxies/universe
picomol galaxies/universe
average stars/galaxy
stars/universe
millimol stars/universe

Compare:

A Dutch shot glass measures 50 milliliters. Since we shouldn't drink and derive we'll top it off with distilled water. That makes 50 grams. The molecular mass of $\mathrm{H}_{2} \mathrm{O}$ is 18 amu . Therefore a topped-off Dutch shot glass contains $\frac{50 \mathrm{~g}}{18 \mathrm{amu}} \approx 1.67 \times 10^{24}$ molecules. Division by N_{A} then yields $\approx 2.78 \mathrm{~mol} \approx 75$ times the no. of stars in the universe. Cheers!

Presuming the sun's mass, which is $1.989 \times 10^{30} \mathrm{~kg}$, to be an adequate average of all stars in the entire universe, we obtain $2.23 \times 10^{22} \cdot 1.989 \times 10^{30} \approx 4.44 \times 10^{52} \mathrm{~kg}$. Also presuming a factor of ≈ 10 for the interstellar and intergalactic medium, the estimated mass of the entire universe would be $\approx 4 \times 10^{53} \mathrm{~kg}$. Division by 1 amu yields $\approx 2 \times 10^{80}$ nucleons. During the bing bang nucleosynthesis, 4 out of every 16 hydrogen atoms would have fused to helium, so $14 / 16$ of all nucleons are protons and $2 / 16$ are neutrons. This means the universe contains 1.75×10^{80} protons, the same amount of electrons, 0.25×10^{80} neutrons, as well as a zillion of morons...

