Speed of light:
Year:
Lightyear:
Age of universe:
\rightarrow Radius of universe:
but current radius:
Gravitational constant:
Avogadro constant:
Nucleons per kilogram:
Mass of nucleon:
Mass of Solar system:
c $=299792458 \mathrm{~m} / \mathrm{s}$
$a=31557600 \mathrm{~s} \quad(=365.25 \times 24 \times 60 \times 60 \mathrm{~s})$
$l y=9.4607 \cdot 10^{15} \mathrm{~m} \quad(=a \times c)$
$A_{U} \approx 13.8 \mathrm{Ga}$
$R_{U} \approx 13.8$ Gly
$R_{U, C} \approx 46.5$ Gly (it expanded ever since)
$G=6.67 \cdot 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$
$N_{A}=6.02 \cdot 10^{23} / \mathrm{mol}$
$N_{K}=6.02 \cdot 10^{26} / \mathrm{kg} \quad(1 \mathrm{~mol} \hat{=} 1 \mathrm{~g})$
$M_{N}=1.67 \cdot 10^{-27} \mathrm{~kg}$
$M_{S}=1.99 \cdot 10^{30} \mathrm{~kg}$
(Sun's mass is 99.87% of solar system, and Sun is an average star)
Average stars per galaxy:
$N_{S} \approx 10^{11}$
(Milky Way: 3×10^{11})
Galaxies in universe:
$N_{G} \approx 10^{11}$
(Hubble Deep Field Images)

Nucleons in all stars in universe: $N_{U}=N_{K} \times M_{S} \times N_{S} \times N_{G}$

$$
=6.02 \cdot 10^{26} \times 1.99 \cdot 10^{30} \times 10^{11} \times 10^{11} \approx \mathbf{1 . 2} \times \mathbf{1} 0^{\mathbf{7 9}}
$$

Including interstellar and intergalactic matter: $\quad \approx 1.2 \times 10^{80}$
Since the universe contains mainly hydrogen this is the no. of atoms in the universe.
Mass of all stars in the universe: $M_{U, s}=N_{U} \times M_{N} \quad \approx 2.10^{52} \mathbf{~ k g}$
Mass of all atoms in the univ.: $\quad M_{U, N}=10 \times M_{U, S} \approx \mathbf{2 . 1 0}{ }^{\mathbf{5 3}} \mathbf{~ k g}$
Mass in universe: Normal matter: 4\%, dark matter: 23\%, dark energy: 73\%.
Schwarzschild radius of universe, based on normal matter:

$$
\begin{aligned}
\qquad \boldsymbol{R}_{\mathbf{S}, \boldsymbol{N}}=2 G M_{U, N} / c^{2} \approx \quad \mathbf{3 1 . 4} \mathbf{G l y}>\boldsymbol{R}_{\boldsymbol{U}} \quad \rightarrow \underline{\text { Is it a black hole? }} \\
\text { With current radius of univ.: } \quad \mathbf{3 1 . 4 ~ \mathbf { G l y } < \boldsymbol { R } _ { \boldsymbol { U } , \mathbf { C } }} \rightarrow \rightarrow \underline{\text { No, it isn't! }}
\end{aligned}
$$

Including dark matter:

$$
((23+4) / 4) \times 31.4=\quad \mathbf{2 1 2} \mathbf{G l y} \gg \boldsymbol{R}_{\mathbf{u}, \mathbf{c}} \quad \rightarrow \underline{\text { Yes, it is! }}
$$

Including dark energy as well:

$$
((73+23+4) / 4) \times 31.4=\quad 784 \text { Gly } \gg \boldsymbol{R}_{\mathbf{u}, \mathbf{c}} \quad \rightarrow \text { Definitely it is! }
$$

How is the inside of a black hole?
well, look around!

