Speed of light: c = 299 792 458 m/s

Year: a = 31 557 600 s (=365.25×24×60×60 s) Lightyear: $ly = 9.4607 \cdot 10^{15} \text{ m}$ (=a×c)

Age of universe: $A_U \approx 13.8 \text{ Ga}$ $\rightarrow Radius of universe: <math>R_U \approx 13.8 \text{ Gly}$

but <u>current</u> radius: $R_{U,C} \approx 46.5 \text{ Gly}$ (it expanded ever since)

Gravitational constant: $G = 6.67 \cdot 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$ Avogadro constant: $N_A = 6.02 \cdot 10^{23} \text{ /mol}$

Nucleons per kilogram: $N_K = 6.02 \cdot 10^{26} \text{ /kg}$ (1 mol \triangleq 1 g)

Mass of nucleon: $M_N = 1.67 \cdot 10^{-27} \text{ kg}$ Mass of Solar system: $M_S = 1.99 \cdot 10^{30} \text{ kg}$

(Sun's mass is 99.87% of solar system, and Sun is an average star)

Average stars per galaxy: $N_S \approx 10^{11}$ (Milky Way: 3×10^{11}) Galaxies in universe: $N_G \approx 10^{11}$ (Hubble Deep Field Images)

Nucleons in all stars in universe: $N_U = N_K \times M_S \times N_S \times N_G$

= $6.02 \cdot 10^{26} \times 1.99 \cdot 10^{30} \times 10^{11} \times 10^{11}$ $\approx 1.2 \times 10^{79}$

Including interstellar and intergalactic matter: $\approx 1.2 \times 10^{80}$

Since the universe contains mainly hydrogen this is the *no. of atoms in the universe*.

Mass of all stars in the universe: $M_{U,S} = N_U \times M_N \approx 2.10^{52} \text{ kg}$ Mass of all atoms in the univ.: $M_{U,N} = 10 \times M_{U,S} \approx 2.10^{53} \text{ kg}$

Mass in universe: Normal matter: 4%, dark matter: 23%, dark energy: 73%.

Schwarzschild radius of universe, based on normal matter:

 $R_{S,N} = 2GM_{U,N}/c^2 \approx$ 31.4 Gly > $R_U \rightarrow$ Is it a black hole?

With current radius of univ.: 31.4 Gly $\langle R_{U,C} \rangle \rightarrow \underline{\text{No, it isn't!}}$

Including dark matter:

 $((23+4)/4)\times 31.4 = 212 \text{ Gly} \gg R_{U,C} \rightarrow \underline{\text{Yes, it is!}}$

Including dark energy as well:

 $((73+23+4)/4)\times 31.4 =$ **784 Gly** $\gg R_{U,C}$ \rightarrow <u>Definitely it is!</u>

How is the inside of a black hole? Well, look around!